Theoretical Studies in Palladium and Platinum Molecular Chemistry

Alain Dedieu
Laboratoire de Chimie Quantique, UMR 7551 CNRS/ULP, Université Louis Pasteur, 4 rue Blaise Pascal, 67000 Strasbourg, France

Received April 19, 1999

Contents

1. Introduction 543
II. Mononuclear Compounds 544
A. Metal Hydrides 544
2. $\mathrm{Pd}-\mathrm{H}$ and $\mathrm{Pt}-\mathrm{H}$ 544
3. $\mathrm{Pd}-\mathrm{H}_{2}$ and $\mathrm{Pt}-\mathrm{H}_{2}$ 546
B. Bare Metal-Ligand Complexes 547
4. Metal Halogen Complexes 547
5. Metal σ-Donor Ligand Complexes 549
6. Metal Carbonyl and Nitrosyl Complexes 550
7. Metal Oxide and Methylidene Complexes 552
8. Other Bare Metal-Ligand Interactions 554
C. π-Complexes 555
D. Miscellaneous 559
III. Polynuclear Compounds 562
A. Bare Metal Systems 562
B. Dinuclear Molecular Complexes 565
9. $\mathrm{M}(0)-\mathrm{M}(0)$ Complexes 565
10. $\mathrm{M}(\mathrm{I})-\mathrm{M}(\mathrm{I})$ Complexes 566
11. $\mathrm{M}(\mathrm{II})-\mathrm{M}(\mathrm{II})$ Complexes 567
12. $M(I I I)-M(I I I)$ and $M(I I)-M(I V)$ Complexes 570
C. Tri and Polynuclear Molecular Complexes 570
IV. Reactivity Studies 572
13. Oxidative Addition and Reductive 572
Elimination
14. Migratory Insertion and Deinsertion, 581
β-Hydride Elimination
15. Nucleophilic Attack on a Coordinated 587
Ligand
16. Ligand Substitution Reactions591
17. Metal-Mediated Oxidation Reactions 593
18. Studies of Catalytic Cycles 595
V. Conclusion and Perspectives 595
VI. References 596

I. Introduction

The chemistry of palladium and platinum is one of the most extensive and versatile fields of chemistry. This results from the fact that these two metals can very easily form adducts with many organic and inorganic molecules. These adducts are in turn very reactive, thus opening the field of catalysis, either homogeneous or heterogeneous. Many books and reviews have been devoted to these palladium and platinum compounds, see for instance refs 1-12; other reviews will be mentioned in due course. Being written by experimentalists, they are mostly dealing

Alain Dedieu was born in 1947 and graduated from the Ecole Nationale Supérieure de Chimie de Strasbourg in 1969. He completed his Ph.D. degree from the Université Louis Pasteur, Strasbourg, in 1975. After one year of postdoctoral studies with Professor Roald Hoffmann at Cornell University, he came back to the Université Louis Pasteur, where he is now Directeur de Recherche at the Centre National de la Recherche Scientifique. His main research interests are in theoretical transition metal chemistry, with an emphasis on the reactivity aspects.
with the experimental aspects, although they sometimes quote some theoretical studies but without a critical assessment of their performance.

Yet both palladium and platinum complexes have been the subject of numerous theoretical studies, as early as in the 1980s. The reasons for this feature are manifold. First, Pd and Pt complexes in the oxidation state +2 (which dominates their chemistry) are usually four-coordinate square-planar complexes. With ligands such as phosphine or amine that can be modeled by PH_{3} or NH_{3}, the systems are rather small and were relatively easy to compute in the early stages of theoretical transition-metal chemistry. Moreover, these complexes generally have a dominant ground-state configuration. They can be, therefore, treated adequately at the correlated level by single-reference methods, although some specific interactions such as metal to CO bonding or agostic bonds may require relatively high-level-type calculations. Relativistic effects are expected to be more important for Pt than for Pd, but the use of relativistic pseudopotentials can overcome this difficulty for the spin-free effects. Another feature that can explain why such systems were tackled quite early is that many reactions undergone by these complexes are prototype reactions of organometallic chemistry: consider, for instance, the oxidative addition of H_{2} on $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ or $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$, the CO and the $\mathrm{C}_{2} \mathrm{H}_{4}$ insertion
into the metal $-\mathrm{CH}_{3}$ bond, the nucleophilic addition on an ethylene coordinated to either Pd or Pt , or on a Pd-allyl moiety, etc.

The interested reader will find some account of these early studies in reviews, especially in two review articles which were published in a special issue of Chemical Reviews about 10 years ago on "Quantum Theory of Matter". ${ }^{13,14}$ Since then, methodologies at hand have been greatly improved, combining sophistication and speed of calculations. In the meantime, the computer resources have been greatly improved also. All these factors have allowed for treatment of systems and reactions which are close to the experimental ones and which were not previously amenable to theoretical investigations.

Our aim is, therefore, to review the quantum chemical studies on Pd and Pt mol ecul ar systems that have been carried out since 1990. We will not address studies dealing with surface chemistry or sol id-state chemistry. We will also restrict oursel ves to quantum mechanics calculations and exclude from the scope of this article molecular mechanics calculations and molecular dynamics calculations, although we are aware of the increasing importance of these techniques in the modeling of organometallic chemistry. We are also well aware that some of the material covered here will be addressed in other review articles of this issue. We want, however to give a comprehensive overview of the palladium and platinum chemistry and show the continuity between studies dealing with very small systems (most often involving bare metal atoms or ions and for which experiments have been carried out in the gas phase) and studies involving large metal complexes with a whole variety of ligands (and for which the relevant experiments have been carried out in solution). Thus, the remainder of the paper will be organized as follows: Recent studies that pertain to the structure of mononuclear systems will be analyzed in section II and those of polynuclear systems in section III. We will then, in section IV, discuss the reactivity of Pd and Pt complexes following the usual classification that relies on reaction types, i.e., oxidative addition and reductive elimination, migratory insertion, deinsertion and β-hydride elimination, nucleophilic attack on coordinated ligands, substitution reactions, oxidation reactions. We will end by briefly quoting studies that have been devoted to catalytic cycles.
However, before going into a detailed survey, it is worth mentioning a salient difference in the electronic structure of the Pd and Pt atoms, since it may lead to different structures and distinct reactivities for systems containing either Pd or Pt. The electronic ground state of Pd corresponds to a closed-shell d ${ }^{10}$ configuration, the open-shell d99 ${ }^{1}$ configuration Iying 0.95 eV (i.e., $21.9 \mathrm{kcal} \mathrm{mol}^{-1}$) above. In contrast, for Pt the $\mathrm{d}^{9} \mathrm{~s}^{1}$ state is the ground state, the d^{10} configuration being 0.48 eV ($11.1 \mathrm{kcal} \mathrm{mol}^{-1}$) higher. ${ }^{15} \mathrm{~A}$ correct and balanced description of the relative energies of these two states is therefore essential, especially to account for reactivity differences with systems in which the field created by the ligand is relatively moderate, i.e., with systems having a low oxidation state and/or a low coordination number.

II. Mononuclear Compounds

A. Metal Hydrides

The hydrido complexes of Pd and Pt form a class of compounds of particular interest in chemistry, not only because of their intrinsic structure and bonding properties, but also because of their relevance to metal-catalyzed or metal-mediated reactions. ${ }^{16,17}$ Among the ones which have been the most accurately treated are the diatomic $\mathrm{Pd}-\mathrm{H}$ and $\mathrm{Pt}-\mathrm{H}$ systems. In this case gas-phase data exist against which theoretical calculations can be tested. Also there have been numerous studies of the interaction of the naked metal with H_{2}, since it bears an obvious relationship to the oxidative reaction of H_{2} in transition-metal chemistry and homogeneous catalysis and to H_{2} chemisorption in metal surface chemistry and heterogeneous catalysis.

1. $\mathrm{Pd}-\mathrm{H}$ and $\mathrm{Pt}-\mathrm{H}$

$\mathbf{P d}-\mathbf{H}$. Since the first pioneering studies of Balasubramanian et al. ${ }^{18}$ and of Langhoff et al. ${ }^{19}$ on PdH, subsequent calculations have been carried out, either to compare the bonding in $\mathrm{Pd}-\mathrm{H}$ to the bonding in other second-row transition metal hydrides, fluorides, or chlorides ${ }^{20}$ or to test the accuracy of the theoretical model. In addition to the treatment of electron correlation, special attention has been paid to the inclusion of the relativistic effects. Thus, in the course of a comprehensive study on the low-lying states of the second-row transition-metal hydrides, the $\mathrm{Pd}-\mathrm{H}$ system has been again considered by Balasubramanian ${ }^{21}$ but with a larger basis set than in ref 18 and with a small core pseudopotential ${ }^{22}$ instead of a Iarge one. Moreover, the more accurate CASSCF/SOCI method was used instead of the CASSCF/FOCI one. For an account of the methods used by Balasubramanian in his investigations, we refer the reader to ref 23. A much better agreement with the experimental values, ${ }^{24-26}$ especially the most recent one of $56 \pm 6 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$ deduced from the ion beam experiments, ${ }^{26}$ was found for the dissociation energy values $\mathrm{D}_{\mathrm{e}}\left(55.4 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$ and for ω_{e} of the ${ }^{2} \Sigma^{+}$ ground state. The computed equilibrium bond length R_{e}, which was already in good agreement with experiment in the previous study, did not change appreciably. One should also mention that these CASSCF/SOCI results are in better agreement with experiment (for D_{e} and ω_{e}) than the previous MCPF results of Langhoff et al. ${ }^{19}$ One should note, however, that the basis used in the latest study of Balasubramanian did not yield a correct separation of the ${ }^{3} D$ and ${ }^{1} \mathrm{~S}$ atomic states of Pd , since it favored the ${ }^{3} \mathrm{D}$ state over ${ }^{1}$ S. Thus, the D_{e} value had to be corrected by the ${ }^{3} \mathrm{D}-{ }^{1} \mathrm{~S}$ separation of 0.72 eV found in the large core pseudopotential calculations. ${ }^{21}$

As far as the relativistic effects are concerned, a very thorough investigation by Sjøvoll et al. ${ }^{27}$ has confirmed that the inclusion of relativistic effects (at least the spin-free ones) is crucial for a proper description of the low-lying states of the $\mathrm{Pd}-\mathrm{H}$ molecule: the nonrelativistic calculations yield excited states that are too high in energy, by as much as 0.23 eV for the ${ }^{2} \Delta$ state (which is the first excited
state). A bond contraction has also been observed, especially in the excited states. It amounts to only $0.02 \AA$ in the ${ }^{2} \Sigma^{+}$ground state. Similar results had been found by J enderek and Marian. ${ }^{28}$ Marian and Fleig have also recently determined the rovibronic spectra of PdH and PdD. ${ }^{29}$ Their calculations take into account the effects of spin-orbit, spin-rotational, and orbit-rotational coupling between the three lowest electronic states ${ }^{2} \Sigma^{+},{ }^{2} \Delta$, and ${ }^{2} \Pi$. They stress, in particular, the need of a precise correlation treatment prior to the inclusion of the spin-orbit, spin-rotational, and orbit-rotational couplings.

This conclusion has also been reached by Sjøvoll et al. ${ }^{27}$ Their calculations are also important in that they allow one to assess the performance of various methodologies for including spin-orbit interaction effects. The two-component calculations (based on the second-order Douglas-K roll spin-orbit operator) are in reasonable agreement with the four-component calculations (based on the Dirac-Coulomb operator) but only once a careful choice of the orbital basis for the Cl calculations has been done. The spin-orbit interaction is found to be significant, especially for the excited ${ }^{2} \Pi$ and ${ }^{2} \Delta$ states which mix substantially. On the other hand, the spin-orbit coupling is relatively small for the ${ }^{2} \Sigma^{+}$ground state, as already noticed by Balasubramanian. ${ }^{21}$ Thus, when dealing with the ground-state properties of Iarger systems, one can probably neglect spin-orbit coupling. One essentially needs to account for the mass velocity and Darwin terms, either through first-order perturbation theory if one uses an all-electron basis set for Pd, or via the use of an effective core potential.

Pt-H. Somewhat different conclusions have emerged from the theoretical studies carried out on $\mathrm{Pt}-\mathrm{H}$. The first studies were aimed at improving earlier calculations ${ }^{30-35}$ and at analyzing how to include the relativistic effects. Gropen et al. ${ }^{36}$ have compared the use of relativistic effective core potentials (RECP) and of first-order perturbation theory to account for the spin-free effects (using a rather flexible basis set and treating electron correlation at the multireference CI level). For Pt alone, their RECP calculations give a better agreement with experiment for the ${ }^{3} \mathrm{~F}-{ }^{3} \mathrm{D}$ and ${ }^{1} \mathrm{~S}-{ }^{3} \mathrm{D}$ state separation than in the previous calculations. In contrast, first-order perturbation theory fails in reproducing the experimental ordering: the computed ordering is ${ }^{3} \mathrm{D}<{ }^{3} \mathrm{~F}<{ }^{1} \mathrm{~S}$ instead of ${ }^{3} \mathrm{D}<{ }^{1} \mathrm{~S}<{ }^{3} \mathrm{~F}$ experimentally. On the other hand, for $\mathrm{Pt}-\mathrm{H}$, first-order perturbation theory is in agreement with experiment, ${ }^{37}$ since it yields the ${ }^{2} \Delta$ state being below the ${ }^{2} \Sigma$ state, whereas the inverse is found in the RECP calculations. One should note, however, that the $\mathrm{Pt}-\mathrm{H}$, bond length computed in the RECP calculations is in better agreement with experiment. ${ }^{38}$

In fact, inclusion of the spin-dependent effects is quite important for $\mathrm{Pt}-\mathrm{H}$ and cannot be neglected if one wants to get a reasonable agreement with experiment. In the CASSCF/FOCI + RCI study of Balasubramanian, the spin-orbit interaction has been introduced via the addition of spin-orbit matrix elements to the Cl matrix. ${ }^{34}$ The ground state is found to be the $\Omega=5 / 2$ state followed by the lowest
$\Omega=1 / 2(1)$ and $\Omega=3 / 2(1)$ excited states and finally the $\Omega=3 / 2(2)$ and $\Omega=1 / 2(2)$ states. ${ }^{34}$ The relative importance of the spin-free and spin-dependent relativistic effects has been assessed by Dyall. ${ }^{39} \mathrm{H}$ is study, which neglects the correlation effects to concentrate only on the relativistic effects, shows clearly that the inclusion of the spin-orbit interaction is crucial to the understanding of the level structure of the molecule, much more than for $\mathrm{Pd}-\mathrm{H}$. The division of states into two groups (the $\Omega=5 / 2$ ground state, the lowest $\Omega=1 / 2(1)$ and $3 / 2(1)$ and the $\Omega=$ $3 / 2(2)$ and $1 / 2(2)$ excited states) has its origin in the spin-orbit splitting. By comparing the results of spin-free no-pair variational calculations with those of first-order perturbation theory, the spin-free effects beyond first order are obtained and are found to be quite important.
Visscher et al. ${ }^{40}$ have gone one step further by performing fully, i.e., four-component, relativistic configuration interaction calculations on the lowest states of Pt-H. As in Dyall's study, ${ }^{39}$ the relativistic Dirac-Hartree-F ock equations have been solved but this has been followed by relativistic configuration interaction calculations. The inclusion of electron correlation does not profoundly affect the excitation energies of the spin-orbit mixed states. On the other hand, it has a significant impact (especially the dynamic correlation in the d shell) on the values obtained for spectroscopic properties. The equilibrium bond length is shortened by about $0.04 \AA$, and the corresponding harmonic frequencies are higher by several hundreds of cm^{-1}.
These calculations can be considered as benchmark calculations against which the accuracy of less expensive approaches can be tested. Such tests are important to delineate methodol ogies which could be reliably used to account for relativistic effects in larger systems of chemical interest. Marian and coworkers ${ }^{41,42}$ have implemented a two-step procedure in which a spin-independent no-pair Hamiltonian is first used in CASSCF and MRCI calculations and spin-orbit interaction effects are taken into account subsequently through variational perturbation theory. They obtained a good agreement with the fourcomponent results. Very recently, Sjøvoll et al. ${ }^{43}$ have assessed the validity of this approach by comparing the effect of treating the spin-orbit coupling on the same footing as electron correlation through a spinorbit Cl procedure, to the effect of introducing it in a separate and final step (in the same way as Marian and co-workers). The coupling between electron correlation and spin-orbit coupling is found to be very weak, both approaches giving agreement with experiment and with the four-component relativistic calculations of Visscher et al. Their results also point to an almost atomic character of the spin-orbit coupling in Pt-H. In fact, the main source of error, which had been Iargely overlooked previously, lies in the difficulty of obtaining an orbital basis of good quality for all the investigated states.
Schwarz and co-workers have resorted to a parametrized one-electron spin-orbit Hamiltonian and calibrated on $\mathrm{Pt}-\mathrm{H}$ the parameter-which takes the form of an effective nuclear charge $Z_{\text {eff }}$ for its use
in molecular calculations. ${ }^{44}$ The calculations were carried out in conjunction with a CASSCF wave function, using the small core relativistic pseudopotential of Stevens et al. ${ }^{45}$ The results appear to be quite promising since the correct state ordering and clustering is obtained. The bond lengths are somewhat overestimated and the frequencies underestimated due to the neglect of dynamic electron correlation. As we shall see later, the same method has been applied to [PtO], $[\mathrm{PtO}]^{+}$, and $\left[\mathrm{PtCH}_{2}\right]^{+}$. Hess et al. have devised an effective one-electron spin-orbit Hamiltonian using well-defined approximations, by averaging the two-electron contribution to the spinorbit matrix elements over the valence shell. ${ }^{46} \mathrm{Cal}$ culations on $\mathrm{Pt}-\mathrm{H}$ have been carried out using a modification to work with an effective core potential valence wave function. ${ }^{47}$ The agreement with the allelectron results turns out to be excellent. Calculations have also been carried out with a one-electron pseudopotential having an averaged d^{9} open shell in the core, the ultimate aim being to treat systems containing a large number of Pt atoms. ${ }^{48}$ The results obtained with this pseudopotential compare well with the average of the three low-lying states ${ }^{2} \Delta,{ }^{2} \Sigma^{+}$, and ${ }^{2} \Pi$.
To end this section one should mention that in contrast to PtH, little work has been performed on the $[\mathrm{PtH}]^{+}$cation in order to solve the existing controversy between earlier cal culations of Wang and Pitzer ${ }^{32}$ which favor a ${ }^{3} \Delta$ ground state and those of Balasubramanian ${ }^{49}$ which give a ground state with 0^{+}symmetry dominated by the nonrelativistic ${ }^{1} \Sigma^{+}$ configuration. It has been found that the spin-orbit coupling effects are much greater in $[\mathrm{PtH}]^{+}$than in $[\mathrm{PdH}]^{+}$and have to be taken into account for $[\mathrm{PtH}]^{+}$. For instance, the lowering of the ${ }^{1} \Sigma_{0}{ }^{+}$state with respect to the ${ }^{1} \Sigma^{+} \lambda-s$ state is $184 \mathrm{~cm}^{-1}$ in $[\mathrm{PdH}]^{+}$ and $1655 \mathrm{~cm}^{-1}$ in $[\mathrm{PtH}]^{+}$. As in the neutral system, the effects areeven larger for the excited states: the ${ }^{3} \Delta_{3}{ }^{-3} \Delta$ splitting amounts to $1390 \mathrm{~cm}^{-1}$ in $[\mathrm{PdH}]^{+}$and to $4359 \mathrm{~cm}^{-1}$ in $[\mathrm{PtH}]^{+}$. The net result is a decrease of the $0^{+}\left({ }^{1} \Sigma_{0}{ }^{+}\right)-3\left({ }^{3} \Delta_{3}\right)$ separation. The more recent Dirac-Hartree-Fock calculations of Dyall et al. ${ }^{39}$ support the earlier results of Balasubramanian, ${ }^{49}$ although they yield an increased separation between the 3 and 0^{+}states on inclusion of the spin-orbit effects.

2. $\mathrm{Pd}-\mathrm{H}_{2}$ and $\mathrm{Pt}-\mathrm{H}_{2}$

The studies on $\mathrm{Pd}-\mathrm{H}$ and $\mathrm{Pt}-\mathrm{H}$ bear an obvious relationship to those that have been carried on $\mathrm{Pd}-$ H_{2} and $\mathrm{Pt}-\mathrm{H}_{2}$. A detailed assessment of the factors that govern the interaction between the naked metal atoms and H_{2} is of primary importance if one wants to have a deep understanding of the oxidative addition reactions that are undergone by palladium and platinum clusters or complexes.

In fact, many theoretical studies had been devoted to this topic prior to 1990, ${ }^{50-57}$ some of them including an estimate of the relativistic spin-orbit effects. 49,57,58 All the studies agreed on the following results: For palladium one finds a molecular dihydrogen complex made of H_{2} weakly interacting with the metal (with
a $\mathrm{Pd}-\mathrm{H}$ bond length varying between 1.67 and 2.05 \AA, and the $\mathrm{H}-\mathrm{Pd}-\mathrm{H}$ bond angle varying between 20° and 30°). A second minimum corresponding to the product of the oxidative addition is also found but somewhat higher in energy ($\left.5.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)^{57}$ and with a very small barrier for the reductive elimination back to the dihydrogen complex. In contrast, there is no dihydrogen complex with platinum, the reaction leading directly to the very stable oxidative reaction product. Low and Goddard showed that this different behavior can be traced back to the different ground state of the two metals. ${ }^{55}$ Platinum with its $\mathrm{d}^{9} \mathrm{~s}^{1}$ ground state is ideally suited for making two $\mathrm{Pt}-\mathrm{H}$ covalent bonds in the PtH_{2} bent molecule. On the other hand, palladium with its d^{10} ground state can easily form a van der Waals or more likely a Lewis acid/Lewis base complex between the empty 5 s orbital and the σ_{g} orbital of H_{2}. To go to the second minimum one has to promote the electronic configuration from d^{10} to $\mathrm{d}^{9} \mathrm{~s}^{1}$. Note also that in contrast to the ${ }^{1} S\left(d^{10}\right)$ state, the ${ }^{3} D\left(d^{9} s^{1}\right)$ state of platinum does insert spontaneously into H_{2}. By inclusion of the spin-orbit coupling, these two states mix, thus allowing the change of configuration in Pt and the formation of the bent complex. ${ }^{49,58}$

More recently, Gropen at al., ${ }^{59}$ using CASSCF/ MRSDCI calculations with their own carefully optimized small core pseudopotential and a rather large basis set, have found for the side-on approach of H_{2} toward Pt only one minimum corresponding to the oxidative addition product on the ${ }^{1} \mathrm{~A}_{1}$ potential energy curve. Similar results have been also obtained by Diez at the DFT level..60 In this study, which is aimed at testing several exchange-correlation functionals, a relativistic effective core potential was used in conjunction with a double ζ basis set (polarized for the hydrogen atoms). It is not clear, however, from the references quoted in the paper whether a smallcore or large-core pseudopotential was used. This makes the comparison with the previous studies somewhat difficult. All the gradient-corrected or hybrid functionals give similar results and as far as geometries are concerned in good agreement with the ab initio results. The agreement is less satisfactory for the reaction energy which is somewhat too high (compared to the ab initio results), although the hybrid functional results agree with the CASSSCF/ MRSDCI results of Gropen et al. ${ }^{59}$ (52.6 and 56.7 kcal mol^{-1} with the B3LYP and B3PW91 functionals vs $50 \mathrm{kcal} \mathrm{mol}^{-1}$ in Gropen's calculations). One should stress that DFT does not find any minimum corresponding to a linear ${ }^{3} \mathrm{~A}_{1} \mathrm{H}-\mathrm{Pd}-\mathrm{H}$ structure, in contrast to the ab initio calculations. A tentative explanation may be that all the functionals used in this paper yield a ${ }^{3} \mathrm{D}-{ }^{1} \mathrm{~S}$ splitting which is too small, thus exemplifying the known propensity of DFT to favor the d^{n} states over the $\mathrm{d}^{\mathrm{n}-1} \mathrm{~s}$ ones. ${ }^{61,62}$ This, in turn, is detrimental to the formation of covalent bonds.

To our knowledge there have not been any fully relativistic configuration interaction calculations carried out either on $\mathrm{Pd}-\mathrm{H}_{2}$ or $\mathrm{Pt}-\mathrm{H}_{2}$ similar to the one performed by Visscher et al. ${ }^{40}$ for $\mathrm{Pt}-\mathrm{H}$. Dyall has extended his methodological study of relativistic
effects at the HF level from the $\mathrm{Pt}-\mathrm{H}$ system to the PtH_{2} system. ${ }^{39}$ As in the previous studies, only one minimum is found at the relativistic level, corresponding to the oxidative addition product. The binding energy increases by as much as 4.3 kcal mol^{-1} on inclusion of the spin-orbit effects. Interestingly too, the bond angle increases when going beyond first-order perturbation theory and to a greater extent when spin-orbit effects are included. This points, in particular to the fact that relativistic effects, including the spin-orbit ones, are quite important in order to describe H_{2} dissociation on Pt properly.

Since spin-orbit effects were computed to be much larger for $[\mathrm{PtH}]^{+49}$ than for for $[\mathrm{PdH}]^{+}, 57$ they have been included (via the relativistic configuration interaction method) for $\left[\mathrm{PtH}_{2}\right]^{+}$only in the CASSCF/ MRSDCI study that Balasubramanian has performed on $\left[\mathrm{PtH}_{2}\right]^{+}$and $\left[\mathrm{PdH}_{2}\right]^{+}$. 63 The results of this study are quite interesting: At the spin-free level, the ${ }^{2} \mathrm{~A}_{1}$ ground-state potential energy curve of $\left[\mathrm{PtH}_{2}\right]^{+}$has two minima, the lower one with a bent geometry (as in PtH_{2}, the $\mathrm{H}-\mathrm{Pt}-\mathrm{H}$ bond angle and $\mathrm{Pt}-\mathrm{H}$ distance amounting to 81° and $1.53 \AA$, respectively) and another one corresponding to a $\left[\mathrm{Pt}^{+}-\mathrm{H}_{2}\right]$ molecular dihydrogen complex (with $\mathrm{H}-\mathrm{Pt}-\mathrm{H}=30^{\circ}$ and $\mathrm{Pt}-\mathrm{H}$ $=1.73 \AA$ Å), but $11.1 \mathrm{kcal} \mathrm{mol}^{-1}$ above. When spinorbit effects are included a significant mixing of the ${ }^{2} \mathrm{~A}_{2}$ state, which is nearly degenerate with the ${ }^{2} \mathrm{~A}_{1}$ state at low $\mathrm{H}-\mathrm{Pt}-\mathrm{H}$ angles, lowers the dihydrogen complex which becomes the new ground state (with $\mathrm{H}-\mathrm{Pt}-\mathrm{H}=22^{\circ}$ and $\mathrm{Pt}-\mathrm{H}=2.10 \AA$). The bent structure (with $\mathrm{H}-\mathrm{Pt}-\mathrm{H}=76^{\circ}$ and $\mathrm{Pt}-\mathrm{H}=1.54 \AA$) is now slightly higher by $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, the effects of spin-orbit coupling are particularly crucial in this system, bringing a differential effect of 0.54 eV , i.e., $12.5 \mathrm{kcal} \mathrm{mol}^{-1}$. For $\left[\mathrm{PdH}_{2}\right]^{+}$, only the dihydrogen complex is found on the ${ }^{2} \mathrm{~A}_{1}$ ground-state potential energy curve. The dissociation energy of $\left[\mathrm{PtH}_{2}\right]^{+}$to $\mathrm{Pt}^{+}\left({ }^{2} \mathrm{D}\right)+\mathrm{H}_{2}, 28 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ was not computed in the absence of spin-orbit effects, but Balasubramanian argues that due to the weakly bound nature of the minimum, the spin-orbit stabilization should be quite similar on both sides. This rather Iarge value (compared to the value of 9.3 kcal mol^{-1} computed for $\left[\mathrm{PdH}_{2}\right]^{+}$) is due the relativistic mass velocity effects (the spin free ones) which stabilize the ($n+1$)s orbital and make it more prone to accept electron density from H_{2}.

At this stage, some reference to experimental results is appropriate. There has been one report of the isolation of the $\mathrm{Pd}-\mathrm{H}_{2}$ system at low temperature in rare-gas matrices and its characterization by vibrational spectroscopy. ${ }^{64}$ According to this study, the $\eta^{1}-\mathrm{H}_{2}$ and the $\eta^{2}-\mathrm{H}_{2}$ structures are close in energy and the presence of one or another is quite dependent on the nature of the rare gas (either Kr or Xe). Unfortunately the most recent calculations that include spin-orbit effects did not address this question and considered only a sideon $\mathrm{C}_{2 v}$ geometry. Among the investigations that were carried out prior to 1990, the SCF calculations of Nakatsuji and Hada ${ }^{52}$ favored the side-on geometry. On the one hand, J arque et al. ${ }^{53}$ did find (when electron correla-
tion is taken into account through configuration interaction calculations) a minimum on the potential energy curve for the end-on approach, this minimum being comparable in energy to the side-on one. Clearly some additional high-level calculations are needed on this topic. For the $\mathrm{PdH}_{2}{ }^{+}$system where experiment could not definitively ascertain whether it corresponds to a bent ${ }^{2} \mathrm{~A}_{1}$ molecular adduct or to a linear ${ }^{2} \Sigma$ state, ${ }^{65}$ the results of the CASSCF/MRSDCI calculations of Balasubramanian and Das that were reported in this joint experimental/theoretical study gave more evidence in favor of the molecular adduct. ${ }^{65}$ Finally, one should mention here that unlike the bare platinum atom, there is a known example of a complex of $\mathrm{Pt}(\mathrm{II})$ which binds H_{2} as a dihydrogen ligand, viz. the $\left[\mathrm{PtH}\left(\mathrm{P}^{\mathrm{B}} \mathrm{Bu}_{3}\right)_{2}\right]^{+}$cation. ${ }^{66}$ The adduct has been characterized by NMR and its structure deduced from an MP2 geometry optimization on the $\left[\mathrm{Pt}\left(\mathrm{H}_{2}\right) \mathrm{H}\left(\mathrm{PH}_{3}\right)_{2}\right]^{+}$model system. The computed binding energy of H_{2} to $\left[\mathrm{PtH}\left(\mathrm{PH}_{3}\right)_{2}\right]^{+}$is rather Iarge, 16 kcal mol ${ }^{-1 .} .66$

B. Bare Metal-Ligand Complexes

1. Metal Halogen Complexes

Siegbahn ${ }^{20,67}$ has considered the $\mathrm{PdF}_{\mathrm{n}}$ and $\mathrm{PdCl}_{\mathrm{n}}$ ($\mathrm{n}=1,2$) systems in the framework of a comparative study of the bond strengths of the second-row transi-tion-metal hydrides, fluorides, and chlorides. The geometries were optimized at the SCF level (with the Hay-Wadt ${ }^{68}$ small-core pseudopotential), the bonding and energetics being analyzed from an allelectron MCPF wave function (with mass-velocity and Darwin relativistic effects accounted for through first-order perturbation theory). Looking first at the mono-ligated systems, one finds that the binding energies vary in the order $\mathrm{Pd}-\mathrm{H}\left(51.1 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)<$ $\mathrm{Pd}-\mathrm{Cl}\left(62.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)<\mathrm{Pd}-\mathrm{F}\left(71.1 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, the ground-state being in all three cases ${ }^{2} \Sigma^{+}$. As expected, the bonding is dominatingly covalent for the metal hydride whereas there is a large contribution of ionic bonding for the halides, as demonstrated by the Mulliken electron populations. Furthermore, there does not seem to be an actual participation of the 3d orbitals to the bonding: On deleting the halogen 3d functions, the lowering of the binding energies is about the same for the fluoride and the chloride, $\sim 12-14 \mathrm{kcal} \mathrm{mol}^{-1}$. This lowering is traced essentially to an inferior description of the affinity of the hal ogen atoms in the absence of such functions, which therefore act as polarization functions. Siegbahn also emphasized the repulsive nature of the interaction between the lone pairs of the halides and the 4 d electrons of palladium. Thus, the question arises of what would be the effect of a second ligand: would the proper hybridization of the metal created by the first ligand be of some help for the binding of the second ligand or would the competition for the available metal covalency reduce the binding energy of the second ligand? The comparative study of the $\mathrm{PdH}_{2}, \mathrm{PdF}_{2}$, and PdCl_{2} systems ${ }^{67}$ gives interesting answers: the second hydrogen in PdH_{2} is bound by $10.8 \mathrm{kcal} \mathrm{mol}^{-1}$ more than the first hydrogen, whereas the second fluorine in PdF_{2} and the second chlorine in PdCl_{2} are bound by 9.2 and $20.4 \mathrm{kcal} \mathrm{mol}^{-1}$ less

Table 1. Ground State, Equilibrium Bond Angle, and Binding Energy (in kcal mol ${ }^{-1}$) of the Second Ligand for the $\operatorname{PdXY}(X=H, F, C l ; Y=F, C I)$ and $\operatorname{Pd}\left(C_{3}\right) \mathrm{Cl}$ Sytems

than the first fluorine and chlorine, respectively (the corresponding binding energy of the second ligand now varying in the order $\mathrm{Pd}-\mathrm{Cl}\left(42.0 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)<$ $\mathrm{Pd}-\mathrm{H}\left(61.9 \mathrm{kcal} \mathrm{mol}^{-1}\right) \approx \mathrm{Pd}-\mathrm{F}\left(62.0 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. The greater binding energy for the second hydride is due to the fact that whereas Pd in its d^{10} ground state is not well prepared for binding the first hydrogen and has to be promoted to the $d^{9} s^{1}$ state, this $d^{9} s^{1}$ state is just the appropriate one for the covalent bonding of the second hydrogen. On the other hand, the ${ }^{2} \Sigma^{+}$ ground state in $\mathrm{Pd}-\mathrm{F}$ and $\mathrm{Pd}-\mathrm{Cl}$ is not well prepared for the ionic bonding of a second halide, and there is therefore a promotion energy to reach a state with a singly occupied π orbital which has to be paid by the second halide. The bond strength of the second halide is therefore weaker than the first one. In fact, it turns out that PdCl_{2} prefers the bent covalent ${ }^{1} \mathrm{~A}_{1}$ structure (as in PdH_{2}) over the linear ionic structure (which is computed to be $1.7 \mathrm{kcal} \mathrm{mol}^{-1}$ above). PdF_{2}, on the other hand, adopts the linear ${ }^{3} \Pi_{g}$ ionic structure. Note here than in contrast to PdH_{2}, the inclusion of relativistic effects is not necessary to account for the bent structure. Finally, although the chemical effect of the 3d functions on the halides is again not very important, the decrease of the binding energy upon deletion of the $3 d$ functions is much smaller than for the monohalides ($3.5 \mathrm{kcal} \mathrm{mol}^{-1}$ only for PdCl_{2}) This indicates that the relative effects of including these functions is not negligible and that at least one 3d function should be included in calculations on larger systems.

In the mixed PdHX systems ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}$), ${ }^{69}$ the covalent bonding dominates, since for both systems the computed equilibrium structure is bent (the $\mathrm{H}-\mathrm{M}-\mathrm{X}$ angle amounting to 90.7° and 85.6°, respectively, i.e., close to the optimal 90° for covalent sdhybridized bonds). The $\mathrm{Pd}-\mathrm{Cl}$ bond is $20.8 \mathrm{kcal} \mathrm{mol}^{-1}$ weaker in PdHCl than the one in PdCl_{2}, whereas the $\mathrm{Pd}-\mathrm{H}$ bond is only $9 \mathrm{kcal} \mathrm{mol}^{-1}$ weaker than the one in PdH_{2}. This again can be rationalized in terms of the various contributions of covalency and ionicity to the bonding. Table 1 summarizes some of the results of these studies on $\mathrm{MH}_{2}, \mathrm{MX}_{2}$, and MHX , together with some results obtained for $\mathrm{MCH}_{3} \mathrm{Cl}$. As expected, the $\mathrm{Pd}-\mathrm{Cl}$ bond strengths are quite similar whereas the $\mathrm{Pd}-\mathrm{CH}_{3}$ bond is weaker than the $\mathrm{Pd}-\mathrm{H}$ bond by $10.7 \mathrm{kcal} \mathrm{mol}^{-1}$. This is due to the increased electron-electron repulsion of the metal delectrons with the CH_{3} electrons. The GVB +Cl calculations of Reynolds and Carter give a value of $12.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the energy difference between $\mathrm{Pt}-\mathrm{H}$ and Pt-CH3. ${ }^{70}$

Interestingly, the enhanced covalent bonding on going from metal fluoride to metal chloride has been also observed in $\left[\mathrm{PtF}_{6}\right]^{2}$ and $\left[\mathrm{PtCl}_{6}\right]^{2}(z=0,1-, 2-)$ by Macgregor in his DFT study of the redox potentials of third-row hexahalide complexes. ${ }^{71}$ This effect may explain why on oxidation of $\mathrm{PtCl}_{6}{ }^{-}$, the chloride array would be oxidized rather than the metal center. Thus, on removal of one electron, the hypothetical PtCl_{6} may have not been observed because of its instability with respect to $\mathrm{Pt}-\mathrm{Cl}$ bond cleavage and formation of Cl_{2}. The energy of the process $\mathrm{PtCl}_{6} \rightarrow$ $\mathrm{PtCl}_{4}+\mathrm{Cl}_{2}$ is indeed computed to be exothermic by $1.2 \mathrm{kcal} \mathrm{mol}^{-1}$, in contrast to the process $\mathrm{PtF}_{6} \rightarrow \mathrm{PtF}_{4}$ $+\mathrm{F}_{2}$ which is endothermic by $77.5 \mathrm{kcal} \mathrm{mol}^{-1 .} .^{71}$ Note that since the geometry of the PtX_{4} system was not optimized (but maintained at the geometry found for PtX_{6}), one expects the chloride reaction to be more exothermic and the fluoride reaction to be less endothermic. The value of $77.5 \mathrm{kcal} \mathrm{mol}^{-1}$ is quite Iarge however, thus optimizing the PtX_{4} geometry should not alter the conclusions.
In the above DFT study the $\mathrm{Pt}-\mathrm{Cl}$ and the $\mathrm{Pt}-\mathrm{F}$ bond lengths were optimized at the LDA level (with quasirelativistic corrections). The computed value for $\left[\mathrm{PtCl}_{6}\right]^{2-}, 2.38 \AA$, is found to be somewhat greater than the experimental average value, $2.34 \pm 0.04 \AA$. In an attempt to test how gradient-corrected exchange correlation functionals perform for Wernertype transition-metal complexes, Deeth et al. have performed LDA and BP86 (with Becke's 88 exchange functional ${ }^{72}$) calculations on $\left[\mathrm{PtCl}_{6}\right]^{2-}$ and $\left[\mathrm{PdCl}_{6}\right]^{2-}$ (with a larger basis set, including d and f functions on the halides). ${ }^{73}$ Although the optimized bond lengths are in better agreement with experiment at the LDA level, $2.36 \AA$ instead of $2.42 \AA$ at the BP 86 level, the computed heterolytic bond dissociation energies show the reverse trend: $409 \mathrm{kcal} \mathrm{mol}^{-1}$ at the LDA level and $392 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ at the BP86 level, to be compared with average thermochemical data of $372 \mathrm{kcal} \mathrm{mol}^{-1}$. A similar behavior is also found for $\left[\mathrm{PdCl}_{6}\right]^{2-}$ (and for square-planar $\left[\mathrm{PdCl}_{4}\right]^{2-},\left[\mathrm{Pd}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ systems as well ${ }^{74}$). The agreement with experiment is better in this case; the corresponding values are LDA $428 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, BP86 $412 \mathrm{kcal} \mathrm{mol}^{-1}$, experiment $416 \mathrm{kcal} \mathrm{mol}^{-1}$. Note that the overestimation of the $\mathrm{Pd}-\mathrm{Cl}$ bond length is not due to the crystal environment in experiments, since a calculation on $\left\{\mathrm{K}_{8}\left[\mathrm{PdCl}_{6}\right]\right\}^{6+}$ cluster yields values similar to the vacuo ones. ${ }^{73}$ The difference between the LDA and BP86 heterolytic bond strengths is ascribed to a poorer description of the balance between covalent and ionic bonding at the LDA level: LDA seems to overestimate the covalent binding. The BP functional on the other hand give more ionic bonding than the LDA one. Thus, this study clearly shows how crucial a correct description of the balance between covalent and ionic bonding found by Siegbahn in the smaller system is. In line with all these results, the comparison between experimental deformation density maps and calculated ones for $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]$ and $\mathrm{K}_{2}\left[\mathrm{PdCl}_{6}\right]$ (at either the HF or the SDCI level) shows an aspherical distribution of the d electrons caused by covalent bonding through the e_{g} orbitals. ${ }^{75}$

2. Metal σ-Donor Ligand Complexes

A few studies have been performed on the metalphosphine bond. They give a quite detailed picture of the bonding and of the level of calculation needed to correctly account for this bond, traditionally viewed as being of dative type. In their study Pacchioni and Bagus ${ }^{76}$ have considered the bare metal-ligand $\mathrm{Pd}-$ PX_{3} system ($\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{CH}_{3}, \mathrm{OCH}_{3}$) and the bis-ligand system trans- $\mathrm{L}-\mathrm{Pd}-\mathrm{PX} 3$ with $\mathrm{L}=\mathrm{CO}$ or NH_{3}. The investigation was limited in most instances to the HF level (with the small-core RECP of Hay and Wadt, ${ }^{68}$ its associated basis set, and a relatively flexible basis set for the ligands). The SCF wave functions were analyzed by means of the constrained orbital variation (CSOV) technique, which allows one to separate σ and π effects. This shows that the dunctions on phosphorus play a significant role in the bonding but essentially as polarization functions to favor the formation of hybridized π orbitals on $\mathrm{P}-\mathrm{X}$ and not as genuine acceptor orbitals. All phosphine ligands considered in the study were found to act simultaneously as a σ donor and π acceptor, the alkylphosphine having an appreciable π acidity. Other components of the bonding include Pd polarization (via $4 d$ hybridization with 5 s and 5 p orbitals) and elec-tron-electron repulsion between Pd and PX_{3}. According to this analysis the polarization of the ligand by Pd is negligible. The σ donation varies only slightly as a function of X, in contrast to the π backdonation. That the σ-donor ability does not vary too much is at variance with the usual assumption, based essentially on the pK_{a} values of the phosphonium ions or on the measurement of the stretching frequencies of CO in (CO) $)_{n} \mathrm{MPX}_{3}$ as a function of X . But Pacchioni and Bagus showed that the proton affinities are not a good measure of the σ-bonding ability and that the v_{co} shifts can be correlated to the π acidity only. This study has been extended by Fantucci et al. ${ }^{77}$ who have included correlation effects (at either the MP2 or BP86-DFT level) and assessed the importance of relativistic effects in the DFT calculations on $\operatorname{Pt}\left(\mathrm{PX}_{3}\right)_{2}$ ($\mathrm{X}=\mathrm{H}, \mathrm{F}$). It has been argued on the basis of these calculations that there is a strong interplay of polarization, correlation, and relativistic effects. Thus, the previous analysis of Pacchioni and Bagus is somewhat oversimplified. Pt sd rehybridization through relativistic effects seems to be quite essential for a reliable prediction and according to F antucci et al. ${ }^{77}$ is largely underestimated by the RECP approach.

The most extended methodological study carried out to date on such dative bonds is the one of Yates and co-workers. ${ }^{78}$ They considered several ECPs and basis sets and various post-Hartree-Fock methods (up to the $\operatorname{QCISD(T)~and~CCSD(T)~level)~and~com-~}$ pared them to DFT methods with either a local density functional (S-VWN) or a nonlocal one (BLYP). If a reasonable bond length can be obtained at a moderate level of calculation (e.g., at the MP2 or at a nonlocal DFT level with a valence double- ζ basis set including polarization functions on phosphorus), reliable energetics are much more difficult to achieve. The energy of the model reaction $\mathrm{Pd}-\mathrm{PH}_{3}$ $+\mathrm{CO} \rightarrow \mathrm{Pd}-\mathrm{CO}+\mathrm{PH}_{3}$ was computed. To obtain a
reliable value, a rather large and well-bal anced basis set between the metal and the ligand is apparently required, together with a high level of calculation, either QCISD(T) or CCSD(T). The DFT calculations seem to greatly overestimate the reaction energy. Thus, recourse to some additivity scheme has been proposed if such high-level calculations cannot be performed when dealing with larger systems. One should stress, however, that the quest for reliability was hampered by the fact that no experimental value is available. Moreover, to assess differential effects it would have been desirable to get bond dissociation energies for $\mathrm{Pd}-\mathrm{PH}_{3}$ and $\mathrm{Pd}-\mathrm{CO}$.
At this stage it might be worth emphasizing that the $\mathrm{Pd}\left(\mathrm{PX}_{3}\right)_{n}$ systems which have been thoroughly analyzed by quantum chemical methods contain relatively small phosphine ligands. Going to larger phosphine ligands can be done through the use of integrated MO + MM methods. We will not discuss this topic since it is the subject of a review in the present issue. Let us simply mention the calculations on $\operatorname{Pt}\left(\mathrm{PR}_{3}\right)_{2}$ (with $\mathrm{R}=\mathrm{Me}$, ${ }^{\mathrm{t}}{ }^{-1}$, and Ph). ${ }^{79}$ It would be interesting to see how such methods can perform on the $M\left({ }^{\left({ }^{H} B u_{2} H\right.}\right)_{3}$ system $(M=P d, P t)$. SCF calculations have been performed on the Pt system ${ }^{80}$ for which a crystal structure exists. They account, in particular, for the fact that the $\mathrm{P}-\mathrm{H}$ atom lies in the coordination plane, as a result of steric hindrance and not because of Pt $\cdots \mathrm{H}$ agostic-type interactions.
The bonding of Pd to NH_{3} is similar to the one to PH_{3} (although in this case the π back-donation is unlikely). This bonding has been discussed by Blomberg et al. in the context of the $\mathrm{N}-\mathrm{H}$ bond oxidative addition to second-row transition-metal atoms (since the primary event in this reaction is the formation of a molecular precursor of NH_{3} with the metal). ${ }^{81}$ The geometry optimization was performed at the SCF level only, whereas the energetics were obtained at the MCPF level. Thus, the computed $\mathrm{Pd}-\mathrm{N}$ bond length may be too long by about 0.10$0.15 \AA$. The energetics were computed at the MCPF level and at the CCSD(T) level with a large basis. It is noteworthy that the $\operatorname{CCSD}(\mathrm{T})$ level of theory increased the binding by $1 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ only, up to 17.6 $\mathrm{kcal} \mathrm{mol}^{-1}$. Blomberg's view of the $\mathrm{Pd}-\mathrm{NH}_{3}$ bonding uses valence-bond-type arguments and is similar to the one put forth for metal monocarbonyls. The bonding is described as resulting from a balance between the electron-electron repulsion between the ligand and the metal on one hand, and an electronnuclear attraction between the lone-pair electrons and a partially unshielded core on the other hand. This unshielding is obtained through the mixture of the low-spin coupled d ${ }^{9} \mathrm{~s}^{1}$ state into the d^{10} state. Of the two hybrids that form, one points toward the lone pair and the other is perpendicular to the metalligand bond, Figure 1. By placing two electrons in the latter the repulsion is decreased. This picture also holds for the $\mathrm{Pd}-\mathrm{H}_{2} \mathrm{O}$ system which has been studied by the same authors, ${ }^{82}$ although the binding energy is smaller, $5.4 \mathrm{kcal} \mathrm{mol}^{-1}$, due to the presence of two tight lone pairs instead of a diffuse one for NH_{3}. It can be easily reconciled with MO theory Ianguage: one would speak of a four-electron repulsive interac-

Figure 1. The $s+d$ and $s-d$ hybrids. (Reprinted with permission from Blomberg et al. New J. Chem. 1991, 15, 727.)

Figure 2. Schematic molecular orbital interaction diagram for a metal to ligand interaction.
tion between the doubly occupied dz^{2} orbital and the σ lone pair, decreased by the mixing with the empty 5 s orbital, Figure 2. The resulting hybridized orbitals shown in Figure 2 are nothing other than the two hybrids mentioned above. Note, however, that this MO picture considers only the repulsion between the $5 \sigma(\mathrm{CO})$ and the $\mathrm{d}_{2}{ }^{2}$ orbitals, in contrast with Blomberg's picture where the whole electron-electron repulsion is more correctly taken into account.

3. Metal Carbonyl and Nitrosyl Complexes

Following the active research that had concentrated on the description of the bonding in $\mathrm{Pd}-\mathrm{CO}$ prior to 1990 (see ref 83 for a short review), a few more studies have appeared since. Smith and Carter performed a comparative study of MCO and MNO ($\mathrm{M}=\mathrm{Pd}$ and Pt) at the GVB +Cl level..$^{84} \mathrm{~F}$ or $\mathrm{Pd}-$

CO, the closed shell ${ }^{1} \Sigma^{+}$ground state is bound by 27.2 $\mathrm{kcal} \mathrm{mol}^{-1}$, in reasonable agreement with the value of $33 \mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$ obtained previously by Siegbahn and which could be considered as a reference. ${ }^{85}$ It is not clear, however, whether the value of $27.2 \mathrm{kcal} \mathrm{mol}^{-1}$ refers to a calculation with a large-core pseudopotential or with a small-core pseudopotential for which an additional lowering of $6.4 \mathrm{kcal} \mathrm{mol}^{-1}$ was mentioned in the Calculational Details section. The next two excited states ${ }^{3} \Sigma^{+}$and the open-shell ${ }^{1} \Sigma^{+}$ state are much higher in energy and unbound with respect to the ${ }^{1} \mathrm{~S}$ Pd ground state.

Bauschlicher and co-workers have looked at the cationic systems $[\mathrm{Pd}(\mathrm{CO})]^{+}$and $\left[\mathrm{Pd}(\mathrm{CO})_{2}\right]^{+}$in the framework of an ab initio study on the first- and second-row transition-metal mono- and dicarbonyl positive ions. ${ }^{86}$ Although the bonding in these systems can be described along the lines used for their neutral analogues (i.e., with the sd-hybridization mechanism to reduce the electron-electron repulsion), the π back-donation effects are very small due to the positive charge and thus the bonding is dominated by the electrostatics. The calculations have been carried out at the MCPF level using a small-core pseudopotential ${ }^{68}$ and a rather large polarized basis set (on the ligands as well as on the metal). They can, therefore, be considered as quite reliable and used as a benchmark (vide infra). For [PdCO] ${ }^{+}$the optimized $\mathrm{Pd}-\mathrm{C}$ bond length is $2.29 \AA$, i.e., larger than in the neutral system as a consequence of the reduced $\mathrm{Pd} \rightarrow \mathrm{CO}$ back-donation. The dissociation energy found for [PdCO] ${ }^{+}, 31.5 \mathrm{kcal}$ mol^{-1}, is of the same order of magnitude as the one computed by Siegbahn and co-workers for PdCO. ${ }^{85}$ For the dicarbonyl system $\left[\mathrm{Pd}(\mathrm{CO})_{2}\right]^{+}$, the computed dissociation energy of the second carbonyl amounts to $27.6 \mathrm{kcal}_{\mathrm{kcl}}{ }^{-1}$, i.e., slightly less than the dissociation of CO in [PdCO] ${ }^{+}$.

PtCO was also considered in the work of Smith and Carter: ${ }^{84}$ it has the same closed-shell ${ }^{1} \Sigma^{+}$ground state as PdCO and the same first two excited states,

Table 2. Summary of the Main Results Obtained for the First Bond Dissociation Energies (in kcal mol ${ }^{-1}$) of $\mathrm{Pd}(\mathrm{CO})_{\mathrm{n}}$ and $\mathrm{Pt}(\mathrm{CO})_{\mathrm{n}}$

system	PdCO	$\mathrm{Pd}(\mathrm{CO})_{2}$	$\mathrm{Pd}(\mathrm{CO})_{4}$	PtCO	$\mathrm{Pt}(\mathrm{CO})_{2}$	$\mathrm{Pt}(\mathrm{CO})_{4}$	ref
MCPF	$33^{\text {a }}$						85
$\mathrm{GVB}+\mathrm{Cl}$	$27.2{ }^{\text {b }}$			$18.5{ }^{\text {b }}$			84
CASSCF + Cl				$49.9{ }^{\text {b }}$ (38.0 ${ }^{\text {c }}$)			88
MP2			$14.5{ }^{\text {b }}$			$18.8{ }^{\text {b }}$	96
CCSD(T)			$7.5^{\text {d,e }}$			$10.9{ }^{\text {d,f }}$	96
LDA-DFT	71.0^{9}						83
			25.9 ${ }^{\text {h }}$			$20.4{ }^{\text {h }}$	91
NL-DFT	$49.8{ }^{\text {g }}$						83
	$48.4{ }^{\text {i }}$			$65.0^{\text {i }}$			90
			$12.3{ }^{\text {j }}$			$15.7{ }^{\text {j }}$	91
			$13.1{ }^{\text {k }}$			$13.4{ }^{\text {k }}$	95
experiment				77 ± 12			89

a The relativistic effects are estimated via first-order perturbation theory. ${ }^{b}$ Using a relativistic pseudopotential. ${ }^{c}$ Including spin-orbit correction. ${ }^{\mathrm{d}} \Delta \mathrm{H}_{0}$ value. ${ }^{\mathrm{e}}$ The $\Delta \mathrm{E}$ value is $7.8 \mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{\mathrm{f}}$ The $\Delta \mathrm{E}$ value is $12.1 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$. g Using a relativistic model potential. ${ }^{\text {h }}$ No relativistic effects included. ${ }^{i}$ Relativistic effects obtained via a two-component transformation. ${ }^{\text {iRelativistic effects }}$ accounted for via the quasirelativistic method. ${ }^{\mathrm{k}}$ Using a relativistic pseudopotential.
although ${ }^{3} \Sigma^{+}$is comparatively much lower (at 7.4 kcal mol^{-1} instead of $20.7 \mathrm{kcal} \mathrm{mol}^{-1}$ in PdCO) due to the preference of Pt for the ${ }^{3} \mathrm{D}$ ground state. In the ${ }^{1 \Sigma^{+}}$ state, Pt is promoted from the ${ }^{3} \mathrm{D}$ to the ${ }^{1} \mathrm{~S}$ state in order to avoid the electron-electron repulsion between the 5σ of CO and the 6 s orbital. Thus, the computed dissociation energy of PtCO to the ground state of Pt is much lower ($18.5 \mathrm{kcal} \mathrm{mol}^{-1}$ only) than the $\mathrm{Pd}-\mathrm{CO}$ dissociation energy. Although this value is much lower than the previous theoretical estimates, it was claimed to be more reliable since it arose from the most highly correlated wave function used to date. However, CASSCF calculations ${ }^{87}$ followed by MRSDCI calculations, ${ }^{88}$ which were performed later by Roszak and Balasubramanian, Ied to a value of $42.9 \mathrm{kcal} \mathrm{mol}^{-1}$ (with respect to ground state of Pt), which upon inclusion of the unlinked quadruple clusters contribution through the Davison correction rose to $49.9 \mathrm{kcal} \mathrm{mol}^{-1}$. The inclusion of the spin-orbit coupling effects, which are particularly important for the excited states of PtCO (the ones which correlate with $\mathrm{Pt}{ }^{3} \mathrm{D}$), lowers the dissociation energy to about $38 \mathrm{kcal} \mathrm{mol}^{-1}$. But this value is still higher than the one of Smith and Carter. Moreover, a recent experimental estimate is much higher, 77 $\pm 12 \mathrm{kcal} \mathrm{mol}^{-1 .} .89$

Some DFT studies have also been performed on PdCO and PtCO. The study of Papai et al. ${ }^{83}$ on $\mathrm{Pd}(\mathrm{CO})$ and $\mathrm{Pd}(\mathrm{CO})_{2}$, although being primarily aimed at a comparison with $\mathrm{Rh}(\mathrm{CO})$ and $\mathrm{Rh}(\mathrm{CO})_{2}$, allows assessment of the performance of DFT calculations, carried out with either a local or a nonlocal (i.e., gradient corrected) exchange correlation potential. The nonlocal (NL) exchange correlation potential seems to give reasonable $\mathrm{Pd}-\mathrm{C}$ bond lengths, 1.92 \AA, when compared to the value obtained by Smith and Carter, $1.96 \AA \AA^{84}$ or to the value of Blomberg et al., ${ }^{85} 1.91 \AA \AA$. For the dicarbonyl system, the linear structure predicted by experiment is only found at the nonlocal level.

No definite conclusion can be drawn for the bond dissociation energies. The NL computed bond dissociation energy for PdCO, $49.8 \mathrm{kcal} \mathrm{mol}^{-1,83}$ is much higher than Blomberg's value. The binding energy of the second CO, $39.9 \mathrm{kcal} \mathrm{mol}^{-1}$, is reduced compared to the bond dissociation energy in PdCO. This
has been ascribed to a weaker π back-donation. The calculations of Papai et al. ${ }^{83}$ carried out for the ions $[\mathrm{Pd}(\mathrm{CO})]^{+}$and $\left[\mathrm{Pd}(\mathrm{CO})_{2}\right]^{+}$yield values that are also much higher than the values obtained by Bauschlicher ${ }^{86}$ at the post-Hartree-F ock level. On the other hand, Rösch and co-workers have obtained through gradient-corrected relativistic DFT calculations a value for PdCO of $48.4 \mathrm{kcal}_{\mathrm{klol}}{ }^{-1.90}$ M ore importantly, their value for the $\mathrm{Pt}-\mathrm{CO}$ bond dissociation energy (to Pt ${ }^{3} \mathrm{D}$), $65.0 \mathrm{kcal} \mathrm{mol}^{-1}$, is at the lower range of the experimental estimate. It is still higher than the spin-free value ($49.9 \mathrm{kcal} \mathrm{mol}^{-1}$) of Roszak and Balasubramanian, however. Clearly more work is needed on both the experimental and theoretical sides to assess definitively the correct value of the bond dissociation energies in PdCO and PtCO. The propensity of the NL-DFT level to yield values of the $\mathrm{Pd}-\mathrm{CO}$ bond dissociation energy that are larger than the post-Hartree-Fock ones might explain the results of Yates et al. ${ }^{78}$ (vide supra), that the reaction energy for the $\mathrm{Pd}-\mathrm{PH}_{3}+\mathrm{CO} \rightarrow \mathrm{Pd}-\mathrm{CO}+\mathrm{PH}_{3}$ process is too large in their NL-DFT cal culations (by about $7 \mathrm{kcal} \mathrm{mol}^{-1}$ when compared to $\operatorname{CCSD}(\mathrm{T})$ calculations).
Li, Schreckenbach, and Ziegler have carried out an extensive NL-DFT study of the first bond dissociation energy in $\mathrm{Pd}(\mathrm{CO})_{4}$ and $\mathrm{Pt}(\mathrm{CO})_{4}$ (and in $\mathrm{Ni}(\mathrm{CO})_{4}$ as well). ${ }^{91}$ Relativistic effects were included, either through first-order perturbation theory ${ }^{92,93}$ or through the quasirelativistic method. ${ }^{94}$ They increase the bond dissociation energy by as much as $12 \mathrm{kcal} \mathrm{mol}^{-1}$ in the platinum case. For palladium, the effect is less crucial, the increase being only $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$. The calculations of J onas and Thiel, 95 that use the same DFT functional but a quasirelativistic pseudopotential together with a rather Iarge basis set (of valence triple ζ quality and supplemented by two polarization functions on the carbon and oxygen atoms), yield about the same results, Table 2. Concomitantly, Frenking et al. ${ }^{96}$ performed a similar study at the MP2 and CCSD(T) levels with a relativistic smallcore pseudopotential ${ }^{68}$ and a rather flexible basis set. As shown in Table 2, the MP2 level overestimates the bond dissociation energy. Taking the CCSD(T) value as a reference, one sees that, as for the monoand dicarbonyls (vide supra), the NL-DFT value is
also slightly overestimated (by about $5 \mathrm{kcal} \mathrm{mol}^{-1}$). The vibrational spectra of $\left[\mathrm{Pd}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Pt}(\mathrm{CO})_{4}\right]$ have been calculated also by J onas and Thiel. ${ }^{95}$ The comparison with experimental data-when availableshows deviations on the order of $20-30 \mathrm{~cm}^{-1}$ only (except in one unexpected case), thus underlying the overall satisfactory performance of the DFT-BP86 calculations. Similar calculations have also been performed recently by the same authors on the yet unknown $\left[\mathrm{Pt}(\mathrm{CO})_{6}\right]^{4+}$ system in the context of a general study on octahedral transition-metal hexacarbonyls. ${ }^{97}$

4. Metal Oxide and Methylidene Complexes

Metal oxide and metal carbene complexes have been investigated quite extensively by a few groups. One of the characteristics of the metal oxide mol ecule is the presence of several states of similar energies arising from different occupations of the highest lying molecular orbitals of σ and π symmetry. Thus, one finds two triplets ${ }^{3} \Pi\left(\pi^{* 3} \sigma^{* 1}\right)$ and ${ }^{3} \Sigma^{-}\left(\pi^{* 2} \sigma^{* 2}\right)$ and three singlets ${ }^{1} \Sigma^{+}\left(\pi^{* 2} \sigma^{* 2}\right),{ }^{1} \Delta\left(\pi^{* 2} \sigma^{* 2}\right)$, and ${ }^{1} \Sigma^{+}\left(\pi^{* 4}\right)$. For [PtO], the most recent experimental data agree on the ${ }^{3} \Sigma^{-}$ground state, 98,99 but for [PdO], the ground state is not known. Calculations by Schwerdtfeger et al., ${ }^{100}$ either at the MP2 level or at the CISD level, predicted the ${ }^{3} \Pi$ level, at variance with earlier calculations by Bauschlicher et al. ${ }^{101}$ that led to the conclusion that the ${ }^{3} \Sigma$ and ${ }^{3} \Pi$ states are very close in energy.
The palladium oxide and palladium dioxide molecules have been analyzed by Siegbahn along the samelines as the palladium chloride molecule, again in the framework of a study of the entire second-row transition metals. ${ }^{102,103}$ The computational procedure was the same as that in the dichloride study, except for [PdO] for which a CASSCF calculation followed by a multireference ACPF calculation was necessary to describe near degeneracy effects. For this system the ${ }^{3} \Sigma^{-}$ground state is almost degenerate with the ${ }^{3} \Pi$ state, the energy difference between the two states being only $0.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. The ${ }^{3} \Sigma^{-}$ground state corresponds to covalent bonding between a neutral Pd atom in a $\left[\mathrm{d}_{\sigma}{ }^{2} \mathrm{~d}_{\delta}{ }^{4} \mathrm{~d} \pi^{3} 4 \mathrm{~s}^{1}\right]$ state and oxygen in a $\left(\mathrm{p}_{\sigma}{ }^{1} \mathrm{p}_{\pi}{ }^{3}\right)$ configuration, leading to the $\left[1 \sigma^{2} 2 \sigma^{2} 1 \delta^{4} 1 \pi^{4} 2 \pi^{2}\right]$ configuration. Thus, despite its quite large length, $1.85 \AA$, the $\mathrm{Pd}-\mathrm{O}$ bond can be considered as a double bond. Note that in addition to the repulsion between the lone pair and the 4d electrons, the promotion energy from the d^{10} ground state of Pd to the $\mathrm{d}^{9} \mathrm{~s}^{1}$ state contributes to a relatively weak binding energy of $47.7 \mathrm{kcal}_{\mathrm{kol}}{ }^{-1}$. This computed value is too small, however, compared to the experimental value of 67.3 $\mathrm{kcal} \mathrm{mol}^{-1} .{ }^{104}$ Increasing the active space in the multireference ACPF calculations led to an improved value of $55.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The remaining difference, $12 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$, points to the difficulty of treating second-row metal oxides. For the dioxide system, a linear geometry with a ${ }^{3} \Pi_{g}$ ground state is found, corresponding to two double bonds. ${ }^{103}$ The $\mathrm{Pd}-\mathrm{O}$ bond in $\left[\mathrm{PdO}_{2}\right]$ is indeed shorter than that in [PdO], $1.75 \AA$ instead of $1.85 \AA$. The binding energy for the second oxygen is slightly smaller, $41.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The study on the metal oxides also includes a comparison with the metal superoxides and perox-
ides. ${ }^{103}$ Both palladium peroxide and palladium superoxide molecules are hardly bound, by 3.4 and 4.4 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively. This is due to strong repulsive interaction between the occupied π_{u} orbitals of O_{2} and the 4d electrons which almost cancels the covalent interactions with the π_{g} orbitals.

Subsequent investigations on [PdO] have been performed at the DFT level. In their study Rösch and co-workers have used either a local or a nonlocal form of the exchange correlation potential and have included spin-free relativistic effects. ${ }^{90}$ Their data allow one to compare the nonrelativistic and the relativistic results. At the nonlocal level and with the relativistic effects included, the binding energy amounts to 62 kcal mol^{-1}, in better agreement with experiment than Siegbahn's value (the computed bond lengths are similar). The ${ }^{3} \Sigma^{-}$state is the ground state, the ${ }^{3} \Pi$ state lying $6.5 \mathrm{kcal} \mathrm{mol}^{-1}$ above. The nonrelativistic local and nonlocal calculations of Broclawick et al. yield a ${ }^{3} \Pi$ ground state, but the ${ }^{3} \Sigma^{-}$state is quite close in energy, less than $1 \mathrm{kcal} \mathrm{mol}^{-1}$ above. ${ }^{105}$ However, according to Broclawick, the state reversal cannot be linked entirely to the relativistic effects since no reversal in the ${ }^{3} \mathrm{D}-{ }^{1}$ S ordering was observed on inclusion of the relativistic effects in the work of Rösch and co-workers.

Both DFT studies do agree with the importance of the covalent component in the bonding picture, as shown by the CASSCF/ACPF calculations of Siegbahn, although the ionicity seems to be greater at the DFT Ievel. According to the Mulliken population analysis, the charge on oxygen ranges from -0.35 to -0.46 in the DFT calculations and is -0.14 in the CASSCF/ACPF calculations. One should keep in mind, however, the limitations of the Mulliken population analysis.

Rösch and co-workers have also considered the [PtO] molecule. ${ }^{90}$ As for [PdO], a ${ }^{3} \Sigma^{-}$ground state is obtained, in agreement with the most recent experimental data. This result is, however, at odds with the one obtained by Baerends and co-workers, ${ }^{106}$ who on inclusion of the spin-orbit interaction found the $\pi_{1 / 2}{ }^{2} \sigma_{1 / 2}{ }^{2}$ state corresponding to the ${ }^{1} \Sigma$ ground state. Rösch finds the bonding in [PtO] much more covalent than in [PdO], especially when the relativistic effects are included. The computed binding energy, 104.7 $\mathrm{kcal} \mathrm{mol}^{-1}$, is also much greater than in [PdO].

Covalency is also an essential part of the bonding mechanism in PdCH_{2} and PtCH_{2}. However, since in the $\mathrm{C}_{2 v}$ moiety the π degeneracy is broken, the formation of two covalent bonds leads to a ${ }^{1} \Sigma^{+}$ground state. The binding energy of PdCH_{2} computed by Siegbahn, $50 \mathrm{kcal} \mathrm{mol}^{-1,102}$ is quite similar to the one computed for PdO. This is probably too low, since a CCSD (T) benchmark calculation carried out with a larger and more flexible basis set (especially for the polarization functions) yielded a value of 58 kcal mol^{-1}, of which $6.2 \mathrm{kcal} \mathrm{mol}^{-1}$ has been traced to the configuration space improvement. In addition, a value of $58.2 \mathrm{kcal} \mathrm{mol}^{-1}$ can be inferred from the difference between the PCI-80 energies obtained later for the two processes $\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{2}+\mathrm{H}_{2}$ and $\mathrm{Pd}+\mathrm{CH}_{4}$ $\rightarrow \mathrm{PdCH}_{2}+\mathrm{H}_{2}{ }^{107}$ One can compare these values to the $\operatorname{CCSD}(\mathrm{T})$ values obtained by Frenking for the
dissociation energies of CH_{2} in $\left[\mathrm{Pd}(\mathrm{CO})_{3}\left(\mathrm{CH}_{2}\right)\right]$ and $\left[\mathrm{Pt}(\mathrm{CO})_{3}\left(\mathrm{CH}_{2}\right)\right]$, which amount to 35.6 and 51.4 kcal mol^{-1}, respectively. ${ }^{108}$ The PtCH_{2} system is much more strongly bound since a binding energy of 99.1 $\mathrm{kcal} \mathrm{mol}^{-1}$ has been computed at the PCI-80 level (with zero-point corrections and inclusion of the spin-orbit effects). ${ }^{109}$

More theoretical work has been devoted to the cationic $\left[\mathrm{PdCH}_{2}\right]^{+}$and $\left[\mathrm{PtCH}_{2}\right]^{+}$systems, especially to $\left[\mathrm{PtCH}_{2}\right]^{+}$, since this system has been identified as being the primary product of the gas-phase reaction of Pt^{+}with CH_{4}. Bauschlicher et al. have considered $\left[\mathrm{PdCH}_{2}\right]^{+}$within the whole series of second-row transition-metal methylidene ions. ${ }^{110}$ The bonding in $\left[\mathrm{PdCH}_{2}\right]^{+}$is as in PdCH_{2} : two covalent bonds are formed in the ${ }^{2} \mathrm{~A}_{1}$ ground state, the σ bond involving an $s+d$ hybrid. That the s contribution to the bonding is important is best seen from the linear relationship between the binding energies and the promotion + exchange energy loss (for an enlightening account of this concept, we refer the reader to refs 111 and 112). The unpaired electron lies in the $s-d$ hybrid in order to maximize the electrostatic bonding and to reduce the metal-ligand repulsion. The MCPF computed binding energy is 67.5 kcal mol^{-1} (which according to Bauschlicher may be slightly too low, due to the propensity of the MCPF theory to underestimate double-bond energies). Bauschlicher's best estimate after applying a correction is $70 \pm 3 \mathrm{kcal} \mathrm{mol}^{-1}$. Note that the electrostatic energy computed from a model where the metal cation is replaced by a point charge is $64 \mathrm{kcal} \mathrm{mol}^{-1}$. Siegbahn et al. have also calculated this binding energy in their assessment of the performance of the PCI-80 method: ${ }^{113}$ they found a value of 72.0 kcal mol^{-1} in very good agreement with a more recent experimental estimate of $70.1 \pm 3.9 \mathrm{kcal} \mathrm{mol}^{-1}$. Interestingly, a gradient-corrected DFT calculation with a large basis set yields a value of 73.5 kcal $\mathrm{mol}^{-1 .} .114$

Larger values have been obtained for the third-row anal ogue $\left[\mathrm{PtCH}_{2}\right]^{+}$. Goddard's calculations gave, at the CASSCF/MRSDCI level, a dissociation energy of $113.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the ${ }^{2} \mathrm{~A}_{1}$ ground state. ${ }^{111} \mathrm{~A}$ correction, based on the comparison between theoretical and experimental values for $\left[\mathrm{LaCH}_{2}\right]^{+}$, $\left[\mathrm{TaCH}_{2}\right]^{+},\left[\mathrm{WCH}_{2}\right]^{+},\left[\mathrm{OsCH}_{2}\right]^{+}$, and $\left[\mathrm{AuCH}_{2}\right]^{+}$was applied, leading to the value of $123 \pm 5 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. Note that the more recent experimental value, 115 $\pm 4 \mathrm{kcal} \mathrm{mol}^{-1,115}$ is closer to the uncorrected value. Whatever the exact value is, it is much greater than that for Pd^{+}. This is due to a much higher promotion + exchange energy loss cost in $\mathrm{Pd}^{+}\left(89.9 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ compared to $\mathrm{Pt}^{+}\left(33 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and, in particular, to a much greater promotion energy for $\mathrm{Pd}^{+}, 73.6 \mathrm{kcal}$ mol^{-1} vs $18.0 \mathrm{kcal} \mathrm{mol}^{-1}$ for Pt^{+}(averaged over all J values). In fact, both "intrinsic" bond energies (according to the definition of Goddard, $\mathrm{D}^{\text {intrinsic }}=\mathrm{D}_{0}$ actual $+\Delta \mathrm{E}^{\text {promotion }}+\Delta \mathrm{E}^{\text {exchange }}$) would be similar.
That the bond energy is much higher for Pt^{+}than for Pd^{+}is a key feature of the $\mathrm{M}^{+}+\mathrm{CH}_{4} \rightarrow\left[\mathrm{MCH}_{2}\right]^{+}$ $+\mathrm{H}_{2}$ reaction, which can only proceed exothermically if the bond dissociation of $\left[\mathrm{MCH}_{2}\right]^{+}$exceeds 111 kcal mol^{-1}. Schwarz has also analyzed the various factors
that account for this difference in a comparative DFT study. ${ }^{2}$ Three functionals have been employed ranging from the local density approximation (LDA) to the LDA augmented by Becke's gradient correction to the exchange functional ${ }^{72}$ and to the LDA + Becke and Perdew ${ }^{116}$ corrections for the exchange correlation functional. Spin-free relativistic effects were accounted for using the quasirelativistic scheme of Ziegler, Baerends, et al. ${ }^{94}$ All these DFT functionals yielded a value for the promotion energy of Pd^{+}and Pt^{+}which is too high (respectively, by 5.3 and 14.5 $\mathrm{kcal} \mathrm{mol}^{-1}$ at the relativistic level). Yet the computed bond dissociation energies were too high, 92.2 and $130.8 \mathrm{kcal} \mathrm{mol}^{-1}$, thus suggesting the propensity of these DFT methods to overestimate the "intrinsic" contribution to the dissociation energies. The comparison between the nonrelativistic calculations and the relativistic ones clearly showed the role of the spin-free relativistic effects: by stabilizing the metal s orbital and destabilizing the metal d orbitals much more for Pt than for Pd, they decrease the promotion energy.
Since the relativistic effects are especially important for $\left[\mathrm{PtCH}_{2}\right]^{+}$and since only the spin-free ones were taken into account in the above study, Dyall, Schwarz, and co-workers have thoroughly investigated both the spin-free and the spin-dependent relativistic effects by carrying out four-component Dirac-Fock calculations in conjunction with a MP2 treatment of electron correlation. ${ }^{117}$ The study has been carried out along the same lines as the one on $\mathrm{Pt}-\mathrm{H}$. In particular, the spin-free and spin-dependent effects have been separated. In addition, MP2 and spin-unrestricted coupled cluster calculations (at the UCCSD(T) level) were performed with a relativistic small-core pseudopotential (either the one of Hay and Wadt ${ }^{68}$ or the one of Christiansen et al. ${ }^{118}$). The spinfree effects obtained here are analogous to those of the quasirelativistic DFT study. The spin-orbit interaction strengthens the covalent double bond by increasing the 5 d content of the σ bond (since the $5 \mathrm{~d}_{3 / 2}$ orbital is lowered in energy through the splitting of the d shell) and by reducing the promotion cost of the $5 d_{5 / 2}$ to the 6 s orbital. There is about 50% quenching of the spin-orbit interaction in $\left[\mathrm{PdCH}_{2}\right]^{+}$: the spin-orbit interaction stabilizes Pt^{+} by $9.6 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ but reduces the bond dissociation energy to $\mathrm{Pt}^{+}+\mathrm{CH}_{2}$ by only $5.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Interestingly, the MP2 and the $\operatorname{CCSD}(\mathrm{T})$ bond dissociation energies are almost identical, 110.2 vs 109.6 kcal mol^{-1}, respectively, with the Hay-Wadt pseudopotential and 105.4 vs $105.9 \mathrm{kcal} \mathrm{mol}^{-1}$ with the Christiansen pseudopotential. When corrected by the spin-orbit stabilization of $5.6 \mathrm{kcal} \mathrm{mol}^{-1}$, the latter yields a value of $100.3 \mathrm{kcal} \mathrm{mol}^{-1}$ that compares well with the MP2/Dirac-Fock value of $100.8 \mathrm{kcal} \mathrm{mol}^{-1}$. However, it is still $15 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ Iower than the experimental value. ${ }^{115}$ It is also of interest to note that in this case (as has been noted for $\left[\mathrm{NiCH}_{2}\right]^{+}$) the B3LYP spin-orbit corrected value fits of 110.0 kcal mol^{-1} better with experiment. In fact, the overestimation of the energies of the covalent bonds by DFT compensate for other deficiencies (such as basis set deficiencies).

5. Other Bare Metal-Ligand Interactions

The interaction of other ligands with bare palIadium or platinum has been the subject of some investigations. Salahub and co-workers have performed a DFT study (with local and nonlocal exchange correlation functionals) of $\mathrm{PdCO}_{2} .{ }^{119}$ Although no complex of this type has been isolated, it is known that CO_{2} can interact with palladium surfaces. CO_{2} is also known to actively take part in reactions mediated or catalyzed by palladium complexes. After the calculations of Salahub, an $\eta^{2}-\mathrm{CO}_{2}$ complex of $\mathrm{Pd}\left(\mathrm{PMePh}_{2}\right)_{2}$ has been characterized spectroscopically. ${ }^{120}$ Indeed, the calculations ended with the η^{2-} coordination mode as the most stable one, 8.4 kcal mol^{-1} Iower than the η^{1}-C coordination mode (NL level value). The computed asymmetric stretch, 2018 cm^{-1}, was found to be very different from the experimental one for CO_{2} on a $\mathrm{H}_{2} \mathrm{O} / \mathrm{Pd}(110)$ surface, viz. $1631 \mathrm{~cm}^{-1}$. Salahub and co-workers noticed a large sensitivity on the surface type. The IR bands of the coordinated CO_{2} in $\left[\mathrm{Pd}\left(\mathrm{PMePh}_{2}\right)_{2}\left(\mathrm{CO}_{2}\right)\right]$ are observed at 1658 and $1634 \mathrm{~cm}^{-1} .{ }^{120}$ However, one might expect a greater charge transfer in the bisphosphine complex than in the bare PdCO_{2} system, since the d_{π} orbital which donates electrons into the π^{*} orbital of CO_{2} is strongly destabilized by the two phosphine ligands. ${ }^{121}$ Yet the structure of the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\eta^{2}-\mathrm{CO}_{2}\right)\right]$ system that has been computed recently at the NLDFT level has the carbon dioxide more distant from the palladium atom than in $\mathrm{PdCO}_{2} .{ }^{122}$ This may reflect a greater electron-electron repulsion from the $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ unit compared to Pd alone. The two $\mathrm{C}-\mathrm{O}$ bond lengths are shorter in $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CO}_{2}\right)\right]$ than in PdCO_{2}, implying less π back-donation. One should stress, however, that the computational characteristics are different in these two calculations, in particular the calculations of $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CO}_{2}\right)\right]$ did not incorporate nonlocal exchange and correlation corrections in the geometry optimization procedure. It would be interesting to have a comparison between calculations carried out with the same methodological procedure. The reduction product $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CO}_{2}\right)\right]^{-}$ has been also investigated. ${ }^{122}$ Its structure corresponds to an $\eta^{1}-\mathrm{CO}_{2}$ coordination mode consistent with a singly occupied orbital made of the $\mathrm{Pd} 5 \mathrm{p}_{\mathrm{z}}$ orbital and of the $\pi^{*} \mathrm{CO}_{2}$ orbital (which is highly localized on the in-plane p orbital of the central carbon atom). In the context of the structure of the bare PdCO_{2} complex, it is worth mentioning that the geometry of the isoelectronic Pd(allene) complex that has been optimized by Blomberg et al. (at the HF level) also displays an η^{2}-coordination mode. ${ }^{107}$
MCSCF calculations have been carried out on the [PtCN] ${ }^{-}$and $[P t N C]^{-}$systems ${ }^{123}$ to model the properties of CN^{-}adsorbed on a platinum electrode, using the large-core relativistic pseudopotential of Hay and Wadt ${ }^{124}$ and a polarized ANO basis set for CN. They yield [PtCN]- being more stable than [PtNC]- by 25.4 $\mathrm{kcal} \mathrm{mol}^{-1}$. The difference in the corresponding vibrational frequencies ($2244.5 \mathrm{~cm}^{-1}$ in [PtCN] ${ }^{-}$and $2197.8 \mathrm{~cm}^{-1}$ in [PtNC] ${ }^{-}$) has been taken as an argument to support the experimental proposal of the existence of two distinct adsorption processes, one via C and the other via N. Similar results were obtained
from subsequent calculations carried out at the DFT level (using the B3PW91 hybrid exchange correlation functional). ${ }^{125}$ It is noteworthy that for the pseudotetrahedral $\left[\mathrm{Pt}(\mathrm{CO})_{3}(\mathrm{CN})\right]^{-}$and $\left[\mathrm{Pt}(\mathrm{CO})_{3}(\mathrm{NC})\right]^{-}$systems, a comparable bond dissociation energy difference of $18.4 \mathrm{kcal} \mathrm{mol}^{-1}$ has been computed at the CCSD(T)//MP2 level by Frenking and co-workers. For the corresponding Pd systems, the energy difference is somewhat smaller, $12 \mathrm{kcal} \mathrm{mol}^{-1 .} .108$

Many-body calculations of the core hole spectrum and of the valence photoemission of [PdN_{2}] system have been performed. ${ }^{126,127}$ The results have been compared to [NiCO], [NiN_{2}], and [PdCO]. Hall and co-workers have carried out a DFT-B3LYP study of the various isomers of $\left[\mathrm{PdC}_{x}\right]^{+}(x=3-24)$, in connection with experimental ion mobility studies. ${ }^{128}$ For $x<10$, linear clusters are preferred over ringcontaining structures. The monocydic rings become more stable beginning at $x=11$ and are close in energy to each other. Thus, the calculations predict for the ion mobility studies a shift in the nature of the dominant isomer at $x=10$. For larger cluster with $x=20$ and 24 the $2+2$ adducts are less stable than the cyclic rings (because of added ring strain). However, all these isomers are less stable than the graphitic sheets.

Siegbahn has analyzed and computed for the entire second-row of transition metals the metal-carbon bond strength for ligands that are representative of various hybridization on carbon, of different steric and electronic requirements. ${ }^{129,130} \mathrm{The} \mathrm{Pd}-\mathrm{C}$ bond dissociation energy increases along the series Pd -$\mathrm{CH}_{3}<\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}_{3}<\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}$ by as much as 24.6 kcal mol^{-1} between $\mathrm{Pd}-\mathrm{CH}_{3}$ and $\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}$ ($\mathrm{PCl}-80$ value). These differences are greater for the metal-carbon bonds than for the corresponding $\mathrm{C}-\mathrm{H}$ bonds. This has been explained by larger repulsive effects of the metal compared to hydrogen. In contrast, the $\mathrm{Pd}-$ $\mathrm{CH}_{3}, \mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}_{5}$, and $\mathrm{Pd}-\mathrm{C}_{3} \mathrm{H}_{7}$ bond strengths are almost identical, as a result of the sd hybridization (vide supra) on the metal. The sd hybridization acts to avoid the repulsion toward carbon. The replacement of one hydrogen atom in PdCH_{3} by either OH , NH_{2}, or F also somewhat modulates the metal to carbon bond strengths but not to a very large extent. In particular, almost identical values are found for $\mathrm{Pd}-\mathrm{CH}_{3}$ and $\mathrm{Pd}-\mathrm{CH}_{2} \mathrm{~F}$. This points to a negligible charge-transfer effect. The $\mathrm{Pd}-\mathrm{CH}_{2}(\mathrm{OH})$ and $\mathrm{Pd}-$ $\mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right)$ bonds are somewhat weaker than the $\mathrm{Pd}-$ CH_{3} bond (by 7.1 and $1.1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, respectively) due to some repulsion of the lone pair of the substituent. Quite interestingly, adding a chloride to the system leads to an increase of the $\mathrm{Pd}-\mathrm{C}$ bond strength of $\mathrm{PdCl}\left(\mathrm{CH}_{2} \mathrm{X}\right)\left(\mathrm{X}=\mathrm{NH}_{2}, \mathrm{OH}\right)$ with respect to $\mathrm{PdCl}\left(\mathrm{CH}_{3}\right)$. This increase is accompanied by an inversion at the nitrogen atom (or at the oxygen atom). Siegbahn has explained this feature by a resonance picture involving, in addition to the $\mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) \mathrm{Pd}^{+} \mathrm{Cl}^{-}$structure, the $\left(\mathrm{CH}_{2} \mathrm{~N}^{+} \mathrm{H}_{2}\right) \mathrm{PdCl}^{-}$ structure. This second resonance structure gives the characteristics of a metal-olefin system to the system (it has been suggested by a referee that a metallacycl opropane structure would also explain the coordination of N to Pd).

C. π-Complexes

π-Complexes of palladium and platinum are experimentally well-known and appear very often as key intermediates in a variety of transition-metalmediated or -catalyzed reactions (see section V for the correspondence to theoretical studies). Representative and intensively studied examples include alkenes, alkynes, aldehydes, or ketones, di oxygen complexes. π-allyl systems form another class with specific properties and will be analyzed separately in this review. Recently, more less common systems such as silenes, disilenes, diphosphene or even C_{60} have been shown to make π-complexes with palIadium or platinum transition metal fragments. The most recent theoretical investigations have focused either on the analysis of the bonding in the latter systems, or on the substituent effects in the more classical π ligands.

The interaction between a transition-metal complex and a π system is generally described by the Dewar-Chatt-Duncanson mechanism ${ }^{131,132}$ where ethylene donates π electrons to an empty σ orbital on the metal. Thus, the π bond is weakened, the π^{*} orbital is lowered in energy and can accept electrons from a back-donating d_{π} orbital on the metal. A recent study by Blomberg et al. of the binding of $\mathrm{C}_{2} \mathrm{H}_{4}$ to the second-row transition-metal atoms ${ }^{133}$ shows that this mechanism holds particularly well for the $\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ system (which is known experimentally ${ }^{134}$). The bonding state is a mixture of $\mathrm{d}^{9} \mathrm{~s}^{1}$ and d^{10} states, $d^{9} s^{1}$ being somewhat dominant. This is seen best in the 4d population which amounts to 9.5 e . The fact that the d population is smaller in the complex than in the ground state of the atom leads to a relatively small correlation effect ($26.9 \mathrm{kcal} \mathrm{mol}^{-1}$ at the MCPF level). Note, however, that at this level the correlation effect is as Iarge as the binding energy, 26.7 kcal mol^{-1}. Enlarging the basis set and using a CCSD(T) method leads to a binding energy of $30.7 \mathrm{kcal} \mathrm{mol}^{-1}$. Calculations performed later according to the PCI80 computational scheme ${ }^{113}$ increased this value slightly, up to $34.6 \mathrm{kcal} \mathrm{mol}^{-1.107} \mathrm{In}$ the calculations that used an all-electron basis set, the mass velocity and Darwin relativistic effects were accounted for by using first-order perturbation theory. They were found to be rather large, $11 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. The Dewar-Chatt-Duncanson mechanism for the bonding between Pd and $\mathrm{C}_{2} \mathrm{H}_{4}$ has not been adopted by NebotGil and co-workers, who considered the $\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}_{4}$ system as a van der Waals complex and made an analysis that concentrated on the di spersion forces. ${ }^{135}$ Using a polarized valence double- ζ basis set with a relativistic pseudopotential, they got a very small binding energy at the CI level $6.0 \mathrm{kcal} \mathrm{mol}^{-1}$, which they needed to scale-up to $20.5 \mathrm{kcal} \mathrm{mol}^{-1}$ according to an estimate of the dispersion energy at $10 \AA$. Their results should be, therefore, viewed with caution. The DFT value- $39 \mathrm{kcal}^{\mathrm{k}} \mathrm{mol}^{-1}$-obtained by Fahmi and van Santen ${ }^{136}$ (at the NL level and taking into account the spin-free relativistic effects) is much closer to that calculated by Blomberg et al. The geometrical parameters of the PdC_{2} unit are also quite alike. Similar results have been obtained very recently at the MC-SCF level by Minaev and

Ågren. ${ }^{137}$ These authors have also calculated, in the context of their study of the spin uncoupling mechanism for the $\mathrm{C}-\mathrm{H}$ bond oxidative addition, triplet and quintet states of $\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$.
The study of the binding of bare metals to the single π bond has been extended to the π bond in benzene by Roczak and Balasubramanian in the case of Pt. ${ }^{138}$ The MP2 geometry optimization leads to a structure in which the Pt atom binds one of the $\mathrm{C}=\mathrm{C}$ bonds in an almost perfect η^{2} fashion. The equilibrium structure corresponds to a singlet ${ }^{1} \mathrm{~A}_{1}$ ground state. The $\mathrm{C}=\mathrm{C}$ double bond is quite elongated, from $1.40 \AA$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ to $1.46 \AA$ in the adduct. The $\mathrm{Pt}^{+}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ system was also investigated in its ground and first excited states. The ground state corresponds to a C $\mathrm{C}_{6 v}$ geometry, as found for other metal cations interacting with benzene, especially second-row transition-metal cations. ${ }^{139}$ It is unfortunate for the sake of comparison, however, that this study by Bauschlicher et al. does not include the Pd ${ }^{+}$ cation. ${ }^{139}$
Two main classes of π ethylene molecular complexes of palladium and platinum are known experimentally, with the metal having either the 0 or +2 oxidation state. Protoype examples of these two classes are $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right], \mathbf{1}_{1}{ }^{140,141}$ and the socalled Zeise's salt $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right],{ }^{142} \mathbf{2}$.

1

2
The geometrical characteristics of $\mathbf{1}$ were computationally revisited by Morokuma and Borden about 10 years ago. ${ }^{143}$ They performed a partial pointwise geometry optimization at the MP2 level on the [(P $\left.\left.\mathrm{PH}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ model complex (using the small-core ECP of Hay and Wadt ${ }^{68}$ and a double- ζ basis set). They compared, in particular, the barrier to rotation and the dissociation energy of an unconstrained ethylene in $\mathbf{1}$ to those of a highly pyramidalized alkene such as in 3. Upon pyramidalization, the

3
binding energy increases to a large extent, by 21.3 $\mathrm{kcal} \mathrm{mol}^{-1}$. The barrier to rotation also increases but by only $5-6 \mathrm{kcal} \mathrm{mol}^{-1}$. All these features result from the lowering of the π^{*} orbital of the double bond (which induces, in turn, an increase of back-donation from the d_{π} orbital of Pt). The fact that the barrier

Table 3. Binding Energies (kcal mol ${ }^{-1}$) and $\mathbf{P d - C ~}$ Bond Distances (\AA, in parentheses) of Some Palladium-Ethylene Complexes

	$\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	$\begin{gathered} \mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2-}- \\ \left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$	$\begin{aligned} & {\left[\mathrm{PdCl}_{3-}\right.} \\ & \left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-} \end{aligned}$	ref
SCF	-0.2 (a)			133
		b (2.38)		148
$\begin{aligned} & \text { MP2 } \\ & \text { DFT-B3LYP } \\ & \text { NL-DFT } \end{aligned}$		b (2.16)		148
	39 (2.20 ${ }^{\text {d }}$		19.0 (c)	161
				136
		15.9 (2.22)		144
$\begin{aligned} & \text { NL-DFT + QR } \\ & \text { MCPF } \\ & \text { CCSD(T) } \end{aligned}$	$\begin{aligned} & 26.7 \text { (2.13) } \\ & 30.7 \text { (e) } \end{aligned}$	19.8 (2.18)		144
				133
				133
		20.9 (f)		148

a The system is not bound at the SCF level. ${ }^{\mathrm{b}}$ The binding energy is not reported. c The $\mathrm{Pd}-\mathrm{C}$ bond distance is not reported. ${ }^{d}$ LDA geometry. ${ }^{e}$ MCPF geometry. ${ }^{\mathrm{f}}$ MP2 geometry, see above.
to rotation is only slightly increased is due to some interaction of the π^{*} orbital also in the pyramidal structure.

Ziegler and co-workers have assessed the role of the relativistic effects contribution to the computed metal-ethylene bond energies in $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right], \mathrm{M}$ $=\mathrm{Pd}$ or Pt. ${ }^{144}$ Their methodological procedure is the same as the one used previously for $\mathrm{Pd}(\mathrm{CO})_{4}$ and $\mathrm{Pt}(\mathrm{CO})_{4},{ }^{91}$ i.e., they include the relativistic effects at the nonlocal level of the DFT calculations, either through first-order perturbation theory (NL + FO) ${ }^{92,93}$ or via the quasirelativistic method (NL + QR). ${ }^{94}$ This last method allows one to optimize geometries with an analytical gradient procedure. As expected, the relativistic effects lead to a significant contraction of the metal to carbon bond, more for Pt $(0.10 \AA$) than for $\operatorname{Pd}(0.04 \AA)$. The result for the $C-C$ bond is a slight increase, because of more π back-donation. The computed structure is in good agreement with the experimental structure of $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{140,141}$ and other determinations using relativistic pseudopotentials. ${ }^{145-148}$ The computed bond energies at the $\mathrm{NL}+$ QR level (19.8 and $22.8 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively) compare well with previous data obtained by Sakaki at the MP4(SDQ) level (with a geometry
obtained at the HF level only). ${ }^{145}$ They are also in agreement with the more recent values of Frenking. ${ }^{148} \mathrm{~F}$ or the same $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Pt}-\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] systems, which were optimized at the MP2 level with a quite flexible basis and a small-core pseudopotential, the CCSD(T) values of F renking are 20.9 and $28.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively, i.e., slightly more than the NL-DFT + QR values of Ziegler. Note that for the corresponding biscarbonyl systems $\left[(\mathrm{CO})_{2} \mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ and $\left[(\mathrm{CO})_{2} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ the $\mathrm{CCSD}(\mathrm{T})$ values are smaller 14.7 and $21.9 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. ${ }^{148}$ This is most likely due to a decreased π back-bonding of the metal d_{π} orbitals (which are stabilized by the π^{*} orbitals of CO). The fact that all these values are much smaller than for the bare Pd and Pt metals arises from the cost of the bending of the two phosphine ligands from a linear geometry in $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}$ to a bent one in the $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{M}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ complex. There remains, however, some discrepancy with experiment, Table 4: Cal orimetric studies for [($\left.\mathrm{PPh}_{3}\right)_{2-}$ $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$] lead to an estimate of $36 \pm 4 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{4}$ bond energy, ${ }^{149}$ i.e., above the best theoretical values (NL + QR or CCSD(T)) by a few kcal mol^{-1}. Calculations of higher quality (perhaps at the optimization level) should be performed before reconsidering the experimental result.

Ziegler et al. noticed that the values obtained at their highest level of calculation, i.e., NL $+Q R$, are in good agreement (within $1 \mathrm{kcal} \mathrm{mol}^{-1}$) with the ones obtained through a less demanding computational scheme in which the geometries are optimized at the local LDA level and the bond energies are calculated at the NL level with inclusion of relativistic corrections through first-order perturbation theory (NL + FO calculation). They also delineated the various components of the relativistic effects in [$\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Pt}$ $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$]. The greatest influence is seen in the forward donation and in the back-donation, which are both increased. As for the metal carbene or metal carbonyl systems, these effects originate from a stabilization of the $6 s$ orbital which in turn leads to a destabilization of the 5d orbitals (by screening the atomic core). The stabilization of the 6 s orbital is translated into the stabilization of the a_{1} orbital of $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$, which

Table 4. Binding Energies ($\mathrm{kcal} \mathrm{mol}^{-1}$) and Pt-C Bond Distances (\AA, in parentheses) of Some Platinum-Ethylene Complexes

	$\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{60}\right)$	$\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}$	ref
SCF	57.6 (2.04)	2.5 (2.16)		18.2 (2.30)	145
		a (2.15)			148
		7.4 (2.14)	21.9 (2.08)		153
		-1.5 (b)	10.2 (2.11)		147
MP2					138
		25.8 (2.17)		37.1 (c)	145
		a (2.13)			148
		24.7 (c)			147
MP4SDQ		20.3 (2.18)			145
B3LYP-DFT				33.9 (b)	161
NL-DFT		13.5 (2.28)			144
NL-DFT + QR		22.8 (2.18)			144
$\operatorname{CCSD}(\mathrm{T})$		28.2 (d)			148
experiment		$36 \pm 4{ }^{\text {e }}$			149
		(2.11)			140,141
			(2.13)		151

${ }^{a}$ The binding energy is not reported. ${ }^{\mathrm{b}}$ ThePt-C bond distance is not reported. ${ }^{\mathrm{c}} \mathrm{HF}$ geometry. ${ }^{\mathrm{d}} \mathrm{MP} 2$ geometry. ${ }^{\mathrm{e}}$ Experimental value for $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$.

Figure 3. Various sites for the coordination of Pt to C_{60}. (Reprinted with permission from ref 154. Copyright 1994.)
becomes more of an acceptor, and into the destabilization of the d_{π} orbital of b_{2} symmetry, which becomes therefore more efficient for the π backdonation.

In line with the growing experimental research on coordination of Buckminsterfullerene by transitionmetal fragments, in particular by platinum (or palIadium) bisphosphine complexes, ${ }^{150}$ several theoretical studies have been devoted to this topic. In a sense they can be viewed as a combination of the studies carried out on the bonding of Pt to benzene and on the bonding of $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ with ethylene that we have reviewed above. The first calculations have dealt with $\left[\left(\eta^{2}-\mathrm{C}_{60}\right) \mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]$ as a model of the η^{2} coordination of C_{60} to $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$, whose structure has been determined by X-ray diffraction. ${ }^{151}$ After Fenske-Hall calculations, ${ }^{152}$ the first ab initio calculations were reported by Koga and Morokuma. ${ }^{146}$ The structure was determined at the HF level, with a quite moderate basis ($3-21 \mathrm{G}$ for C, P, and H) and the small-core pseudopotential of Hay and Wadt. ${ }^{68}$ The computed structure is in good agreement with the experimental one for the PtC_{2} unit. More interestingly it reproduces well the lengthening of the coordinated $\mathrm{C}=\mathrm{C}$ double bond on going from free C_{60} to the bound one. The $\mathrm{Pt}-\mathrm{C}$ bonds are slightly too short and the Pt-P bonds much too long, most likely as a result of the neglect of electron correlation and/or the lack of polarization functions on phosphorus. The HF binding energy is $21.9 \mathrm{kcal} \mathrm{mol}^{-1}$, compared to 7.4 kcal mol^{-1} for free ethylene. Although electron correlation effects should increase these values by about 20 kcal mol^{-1} (vide supra), it should not affect the difference between them too much. That the binding energy is stronger for C_{60} is in line with the previous findings of Morokuma and Borden: ${ }^{143}$ that the strain (present in C_{60}) lowers the π^{*} orbital and increases π backdonation. It would have been interesting to have a comparison with the binding energy to benzene. The fact that the π^{*} orbital is quite low in energy was obtained in previous cal culations of $\mathrm{C}_{60}{ }^{153}$ and is seen experimentally from the high electron affinity of 2.7 $\pm 0.1 \mathrm{eV} .{ }^{150}$

Note that these arguments imply that the orbital energy factor, in a fragment molecular orbital interaction analysis, is prevailing over the orbital overlap factor. Lichtenberger et al. have analyzed, again via Fenske-Hall-type calculations, the site preference for the coordination of a bare Pd. ${ }^{154}$ The possible sites for the position of the metal are (i) η^{1} directly above a carbon atom, (ii) η^{2} above two carbons of a pentagon or above two carbons between two pentagons, (iii) η^{5} above a pentagon, or (iv) η^{6} above an hexagon, Figure 3. Their analysis is based on a comparison between orbital overlap and charge distributions. They conclude that there is a preference for an η^{2} coordination
above two carbons between two pentagons, i.e., above the (6-6) bond at the fusion between two sixmembered rings. This is in agreement with the calculations on the $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ system of Roszak and Balasubramanian. ${ }^{138}$ Note, however, that the overlap factor does not seem to favor the binding of Pd to C_{60} over the binding to ethylene, ${ }^{154}$ at variance with K oga and Morokuma's calculations. ${ }^{153}$ It may well be, however, that for $\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}$, where the d_{π} orbital is hybridized toward the double bond, the differential overlap factor is less important than for Pd alone, where there is no hybridization present. An analysis somewhat similar to the one of Lichtenberger et al. has been carried out at the extended Hückel level for the $\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ fragment by Lopez and Mealli. ${ }^{155}$

Koga and Morokuma's analysis of the wave function revealed that nothing could a priori prevent the binding of up to 6 Pt bisphosphine fragments, as exemplified by experiment. ${ }^{150,156}$ Pobl et and co-workers have carried out a HF study of $\left(\eta^{2}-\mathrm{C}_{60}\right)\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]_{n}$ systems, with $\mathrm{n}=1,2$, and 6 for Pt and $\mathrm{n}=6$ for Pd , using a larger basis set than Koga and Morokuma (in particular with polarization functions on phosphorus atoms). ${ }^{147}$ The metal was forced to sit above a (6-6) bond, at the fusion of two hexagons for $\mathrm{n}=$ 1 and 2. For the hexametallic system, the geometry optimization was restrained to T_{h} symmetry. The computed bond lengths and bond angles are in good agreement with experiment. For $\mathrm{n}=1$, the binding energy is $11.7 \mathrm{kcal} \mathrm{mol}^{-1}$ greater than that with [Pt$\left.\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, thus confirming K oga and Morokuma's results obtained with a smaller basis. A careful analysis of the trends in the binding energies along the series $n=1,2,6$ led to the conclusion that the $\mathrm{Pt}-\mathrm{C}_{60}$ interaction is highly local. The overall binding energy for the six $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ fragments is 30.4 kcal mol^{-1}, much higher than the corresponding value for $\mathrm{Pd}, 10.9 \mathrm{kcal} \mathrm{mol}^{-1}$. However, without a calculation including electron correlation, one cannot discuss this difference: no minimum was found at the HF level for $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, whereas we have seen above that the NL + QR calculations of Ziegler et al. ${ }^{144}$ yielded a binding energy of $19.8 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, i.e., not much different from the binding energy of 22.8 kcal mol^{-1} for the platinum analogue.

Poblet and co-workers have also analyzed the wave function via a Bader-type analysis, ${ }^{157,158}$ which is known to be less sensitive to the choice of the basis set than the Mulliken population analysis. The charge transfers computed through this method are of lesser magnitude than the ones obtained through the Mulliken population analysis. However, they confirm that more electron density is transferred from the metal fragment to the organic moiety in [Pt($\left.\left.\mathrm{PH}_{3}\right)_{2}\left(\eta^{2}-\mathrm{C}_{60}\right)\right]$ than in $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (although the difference is reduced from 0.61e in the Mulliken population analysis to 0.35 e in the Bader-type analysis). Both analyses also show that the amount of charge transfer decreases on going from $\mathrm{n}=1$ to 6 , but not too much. Poblet has also investigated the reduction of the various $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]_{n}\left(\eta^{2}-\mathrm{C}_{60}\right)$ systems. The relativeelectron affinities are in agreement with experiment, a feature already observed by Koga and Morokuma for $\mathrm{n}=1 .{ }^{153}$

The system $\left[\mathrm{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}(\mathbf{2})$ has been examined by Sakaki and leki in the framework of a comparative study of the bonding of ethylene, silene, and disilene with $\left[\mathrm{PtCl}_{3}\right]^{-}$and $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right] . .^{145}$ The geometries were optimized at the SCF level. The computed Pt-C bond lengths are too long, Table 4. This is most likely a result of some basis set deficiency to describe the anionic nature of the system and/or of the absence of the counterion (K^{+}) in the calculations. We note that for the neutral complex $\left[\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, the agreement with experiment is much better, Table 4. For other discussions of the influence of the counterion, we refer the reader to the calculations on [TI_{2-} $\left.\mathrm{Pt}(\mathrm{CN})_{4}\right]^{159}$ and on $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]^{2-160}$ that are reviewed further in this article. In the more recent investigation of Strömberg et al., ${ }^{161}$ the electron correlation effects have been taken into account via the DFT-B3LYP method. The calculations used a double ζ valence basis set and the small-core pseudopotential of Hay and Wadt. ${ }^{68}$ Unfortunately no metal to carbon bond distance is given. They should be smaller than the SCF-optimized ones. The binding energy (computed with a larger and polarized basis set) compares well with the MP2 and MP4SDQ values of Sakaki and Ieki, Table 4. ${ }^{145}$ The aim of this DFT study was to compare the binding energies of ethylene to the anionic $\left[\mathrm{PtCl}_{3}\right]^{-}$, neutral cis- and trans-[$\left.\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, and cationic cis- and trans[$\left.\mathrm{M}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{+}$system within the nickel triad $\mathrm{M}=\mathrm{Ni}$, Pd, Pt. It has been found that $\mathrm{C}_{2} \mathrm{H}_{4}$ binds the platinum systems $12-15 \mathrm{kcal} \mathrm{mol}^{-1}$ more strongly than the corresponding Pd systems, although this is somewhat modulated by the cis or trans conformation of the bis-chloro and bis-amino systems. ${ }^{161}$ The strength of the metal-ethylene bond can be also modulated by constraints on the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle, as shown by Siegbahn, Strömberg, and Zetterberg in the framework of their study of the insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the $\mathrm{Pd}-\mathrm{C}$ bond of $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+} .162$ The $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle which amounts 105.6° in [$\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}-$ $\left.\left(\mathrm{CH}_{3}\right)\right]^{+}$is reduced to 94° when $\mathrm{C}_{2} \mathrm{H}_{4}$ is bound, due to some steric repulsion between the olefin and the two amine ligands. Thus, when the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle is constrained to small values, the steric repulsion of the two amines with the incoming olefin is not as large as it would have been for a angle of 105° and the binding energy of $\mathrm{C}_{2} \mathrm{H}_{4}$ increases from 27.3 to $33.5 \mathrm{kcal} \mathrm{mol}^{-1}$ (DFT-B3LYP values) for a $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle of $70^{\circ} .{ }^{162}$

Despite its deficiencies, the study of Sakaki and I eki allows one to compare the bonding capabilities of silene $\left(\mathrm{SiH}_{2} \mathrm{CH}_{2}\right)$ and disilene $\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)$ to those of $\mathrm{C}_{2} \mathrm{H}_{4} \cdot{ }^{145}$ At both the MP2 and MP4SDQ levels, $\mathrm{Si}_{2} \mathrm{H}_{4}$ is more strongly bound than $\mathrm{C}_{2} \mathrm{H}_{4}$ to $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]$ by $50 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ and to $\left[\mathrm{PtCl}_{3}\right]^{-}$by $55 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. The silene system $\left(\mathrm{SiH}_{2} \mathrm{CH}_{2}\right)$ lies between since the corresponding binding energies range from 29.8 (MP2) to $22.5 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP4) for the binding to $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]$ and from 35.6 (MP2) to $33.5 \mathrm{kcal} \mathrm{mol}^{-1}$ (MP4) for the binding to $\left[\mathrm{PtCl}_{3}\right]^{-}$. The increase in the binding on going from ethylene to disilene is traced back to an increase of both σ donation and π back-donation. The π back-donation is increased so much in $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)\right]$ that the bonding is best described in terms
of covalent bonding and no longer through the Dewar-Chatt-Duncanson model. Similar conclusions have been reached by Cundari and Gordon in their HF study of $\left[\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)\right]$ and $\left[\mathrm{PtCl}_{3}{ }^{-}\right.$ $\left.\left(\mathrm{Si}_{2} \mathrm{H}_{4}\right)\right]^{-.}{ }^{163}$ The perpendicular bisphosphine and parallel tris-chloro disilene complexes are found to be transition states for $\mathrm{Si}_{2} \mathrm{H}_{4}$ rotation and $\mathrm{Pt}-\mathrm{Cl}$ bond addition across the $\mathrm{Si}-\mathrm{Si}$ bond, respectively.

The bonding in the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\right]$ diphosphene complex $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{HP}=\mathrm{HP})\right]$ has been studied by Sigalas et al., first at the HF level ${ }^{164}$ and then at both the DFT and MP2 levels. ${ }^{165}$ The geometries have been optimized either at the HF or DFT level (with and without gradient corrections). They are in good agreement with experiment, especially those at the nonlocal DFT level. The η^{2} structure has a quite significant rotation barrier, in contrast to the η^{1} structure where the diphosphene rotates almost freely. This η^{2} mode of coordination is the preferred one (by about $20 \mathrm{kcal} \mathrm{mol}^{-1}$ or more, depending on the level of theory).

Some studies have also been devoted to alkyne complexes of either Pd or Pt, including Ziegler's own extension. ${ }^{144}$ Calculations were carried out on the $\left[\operatorname{PdCl}\left(\mathrm{NH}_{3}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ model system ${ }^{166}$ in order to mimic the intermediate expected from the reaction of alkynes with halide-bridged dipalladium complexes. ${ }^{167,168}$ Note that experimentally the alkynes have the hydrogen atoms substituted by electronwithdrawing groups. ${ }^{167}$ The geometries were optimized at theHF level only, with an all-electron basis and no incorporation of relativistic effects. The computed $\mathrm{Pd}-\mathrm{C}$ bonds are very long ($2.52 \AA$ in the perpendicular form corresponding Zeise's salt). This is consistent with poor π back-donation and a strong electron-electron repulsion of the two doubly occupied π orbitals of $\mathrm{C}_{2} \mathrm{H}_{2}$ with the $\left[\mathrm{PdCl}\left(\mathrm{NH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$ fragment. A very small binding energy was computed, $5.8 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ after basis set superposition error correction. Clearly more work is needed, in particular at a much higher level of theory, to confirm these results. We may note, however, that Frenking and co-workers found for the $\left[\mathrm{Pd}(\mathrm{CO})_{3}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ and $[\mathrm{Pt}$ $(\mathrm{CO})_{3}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$] systems somewhat similar results. At the MP2 level with a small-core relativistic potential pseudopotential ${ }^{68}$ and a quite flexible basis set, very long $\mathrm{Pd}-\mathrm{C}$ and $\mathrm{Pt}-\mathrm{C}$ bonds (2.51 and $2.41 \AA$, respectively) were computed, associated with very shallow energy minima. ${ }^{108}$ TheCCSD(T) single-point energy calculation gave slightly negative bond dissociation energies. Thus, this seems to confirm the lower level calculations. The geometry of $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)\right.$ $\left(\mathrm{SnH}_{3}\right)\left(\mathrm{SiH}_{3}\right)(\mathrm{MeCCH})$] has been optimized at both the HF and MP2 levels (with a large-core pseudopotential and a valence double- ζ basis set) in the framework of a theoretical study of the palladiumcatalyzed silastannation of alkynes. ${ }^{169}$ A very long $\mathrm{Pd}-\mathrm{C}$ bond $(2.68 \AA)$ is found at the HF level but is much shorter ($2.35 \AA$) at the MP2 level. Siegbahn's calculations on the bare metal complex $\operatorname{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ are also indicative of a weak binding at the SCF level, the SCF optimized $\mathrm{Pd}-\mathrm{C}$ bond lengths being too long. ${ }^{170}$ At the MCPF or CCSD (T) level, using either the geometry optimized for $\operatorname{Ru}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ or the MP2
geometry, a definite binding of about $28 \mathrm{kcal} \mathrm{mol}^{-1}$ is found. The computed bond lengths that result from the MP2 geometry optimization are not given however, thus preventing a comparison with the SCF geometry optimization. ${ }^{170} \mathrm{~A}$ very recent MP2 geometry optimization of both the perpendicular and planar geometries of $\left[\mathrm{PtH}\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ has been carried out in the framework of the study of $\mathrm{C}_{2} \mathrm{H}_{2}$ insertion into the $\mathrm{Pt}-\mathrm{H}$ or $\mathrm{Pt}-\mathrm{Si}$ bond by Sakaki and co-workers. ${ }^{171}$ It also points to quite long $\mathrm{Pt}-\mathrm{C}$ bonds, especially in the perpendicular form, $2.52 \AA$ (note that in this case the ligand trans to $\mathrm{C}_{2} \mathrm{H}_{2}$ is SiH_{3}, i.e., with a rather important trans influence). The planar form is slightly more stable than the perpendicular form and is bound by $17.5 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to $\left[\mathrm{PtH}\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PH}_{3}\right)\right]$ and $\mathrm{C}_{2} \mathrm{H}_{2}$. This value should be reduced by the basis set superposition error, which has not been computed however. ${ }^{171}$
Complexes of $\mathrm{Pt}(\mathrm{II})$ with alkynes $\left[\mathrm{K}(18-\mathrm{cr}-6) \mathrm{PtCl}_{3-}\right.$ (MeCCMe)] and [K (18-cr-6) PtCl_{3} (EtCCEt)] have been recently synthesized and characterized by a crystal structure together with ab initio calculations on the corresponding anions. ${ }^{172}$ Experimentally, the Pt-C bond lengths are quite short, $2.14 \AA$ (average value), and the CC triple bond is only slightly elongated with respect to the free alkyne, thus indicative of a very small π back-donation. Unfortunately very few details are given on the calculations: one does even not know which method was used and the computed $\mathrm{Pt}-\mathrm{C}$ bond lengths are not given.

Related to all these alkyne complexes are the metallacarbyne complexes of $\mathrm{Pd}(\mathrm{II})$ that have been analyzed in a joint experimental and theoretical study. ${ }^{173}$ The experimental systems are of the type shown in 4, displaying an unexpected η^{1} mode of bonding. They havebeen modeled by $\left[\mathrm{Cp}(\mathrm{CO})_{2} \mathrm{MoCH}\right]-$

$\left[\mathrm{PdCl}_{2}\left(\mathrm{NH}_{3}\right)\right]$. The optimized SCF structure is in good agreement with the experimental one. An analysis of the wavefunction (based in particular on fragment electron deformation density maps) shows that the structure can be best rationalized as a Lewis acidLewis base adduct $\left(\left[\mathrm{PdCl}_{2}\left(\mathrm{NH}_{3}\right)\right]\right.$ being the Lewis acid through its hybridized $\mathrm{dx}_{x^{2}-y^{2}}$ empty orbital and [Cp$\left.(\mathrm{CO})_{2} \mathrm{MoCH}\right]$ being the L ewis base). In line with this finding, a geometry optimization of the $\left[\mathrm{Cp}(\mathrm{CO})_{2_{-}}\right.$ $\mathrm{MoCH}]\left[\mathrm{AlH}_{3}\right]$ system led to a similar η^{1} structure. ${ }^{173}$
The bonding situation is completely different in alkyne complexes of $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\right]$ or of $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]$. The [$\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}$] fragment is expected to be more effective toward π complexation. Ziegler's NL + QR calculations yield binding energies of 29.5 and 30.2 kcal mol^{-1}, respectively (the corresponding nonrelativistic values are 28.7 and $30.2 \mathrm{kcal} \mathrm{mol}^{-1}$, thus pointing to
a weak relativistic effect for Pd). ${ }^{144}$ In the dicyanoacetylene complex $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{NCCCCN}]\right.$, studied by Nakatsuji and co-workers, ${ }^{174}$ the cyano substituents further activate the triple bond toward complexation. It is therefore not surprising that the HF geometry optimization yields a structure in relatively good agreement with the experimental structures of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{~F}_{3} \mathrm{CCCCF}_{3}\right]^{175}\right.$ and of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{PhCCPh}],{ }^{176}\right.$ at least for the PtC_{2} unit.

As far as the dioxygen complexes are concerned, we have already mentioned the Pd superoxide and peroxide systems studied by Siegbahn. ${ }^{103}$ The dioxygen complex of $\left[\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ has been looked at by Fantucci, using $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{O}_{2}\right)\right]$ as a model. ${ }^{177-179}$ The method used in this study combines the HF model and an electron correlation correction obtained through the LYP functional. The geometry optimization was nevertheless carried out at the HF level, giving good agreement with experiment. ${ }^{180}$ Although some calculations were apparently also carried out on the [Pt$\left.\left(\mathrm{PH}_{3}\right)_{2}\right]$ fragment, no value of the binding energy of O_{2} to this fragment is reported. $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{O}_{2}\right)\right]$ has been investigated much more systematically by Ziegler and co-workers and compared to $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{O}_{2}\right)\right]$ with the same methodological approach as for $\left[\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$]. ${ }^{144}$ The computed geometries of both systems compare well with experiment. ${ }^{180}$ Once the relativistic effects have been incorporated in the calculations, a shorter $\mathrm{O}-\mathrm{O}$ bond is obtained in the Pd complex, $1.42 \AA$ instead of $1.45 \AA$ in the Pt complex (the experimental values in $\mathrm{M}\left[\left(\mathrm{PPh}(\mathrm{t}-\mathrm{Bu})_{2}\right)\right]_{2-}$ $\left(\mathrm{O}_{2}\right)^{180}$ are 1.37 and $1.43 \AA$ for $\mathrm{M}=\mathrm{Pd}$ and Pt , respectively). Despite a noticeable contraction on inclusion of the relativistic effects, the calculations fail, however, to reproduce the shorter metal to phosphorus bond for Pt: the computed values are $2.29(\mathrm{Pd})$ and $2.33 \AA(\mathrm{Pt})$, the corresponding experimental values are 2.39 and $2.29 \AA$, respectively. For the $\mathrm{Pd}-\mathrm{O}$ and $\mathrm{Pt}-\mathrm{O}$ bonds, the agreement is better, $2.03 \AA$ for both metals computationally vs 2.05 and $2.02 \AA$ experimentally. The binding energies at the NL-DFT + QR level are 15.5 and $21.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for the Pd and Pt complexes, respectively, the corresponding NL values being 10.4 and $7.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, as expected, the enhancement due to the inclusion of rel ativistic effects is much greater for Pt.

There has been some discussion about the preferred mode of coordination of ketene $\left(\mathrm{Ph}_{2} \mathrm{C}_{2} \mathrm{O}\right)$ to d^{10} bisphosphine fragments. Earlier ab initio cal culations of Nakamura and Morokuma suggested an η^{2}-(C,C) equilibrium structure. ${ }^{181}$ However the X-ray crystal structure of the [dtbpmNi $\left(\mathrm{Ph}_{2} \mathrm{C}_{2} \mathrm{O}\right)$] system (dtbpm $=$ bis(di-tert-butylphosphino)methane, ${ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{Pt}_{-}$ Bu_{2}) with a $\mathrm{P}-\mathrm{Ni}-\mathrm{P}$ angle of 80° has a $\eta^{2}-(\mathrm{C}, \mathrm{O})$ structure. ${ }^{182}$ This structure has been rationalized in the same article through MO arguments on the basis of extended Hückel calculations for both Ni and Pt systems. ${ }^{182}$ One may expect that both coordination modes are close in energy and can interchange easily on the ligand set. ${ }^{183}$

D. Miscellaneous

Other quantum chemical studies have been performed on particular systems, most often in connec-
tion with experimental studies in order to assess a structure, some isomerism, or get some idea about the influence of the surroundings. Due to the development of a user-friendly and efficient quantum chemistry package, in the future one expects to see more and more of such studies.

HF calculations have been carried out on [\{($\left.\mathrm{CH}_{3}\right)_{2^{-}}$ $\mathrm{NO})\} \mathrm{PdCl}\left(\mathrm{PH}_{3}\right)$], where the dimethyl nitroxide ligand is a model for the TMPO ligand (TMPO $=2,2,6,6-$ tetramethylpipridinyl-1-oxy). ${ }^{184}$ The bonding has been analyzed and compared to that in [\{($\left.\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{NO}\right)\right\}$ CuBr_{2}]. In the palladium complex, the singly occupied orbital on the $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)$ fragment is mostly of metal d_{π} character. Its interaction with the singly occupied π^{*} orbital of the dimethyl nitroxide radical gives rise to a strong covalent interaction, in line with the experimental crystal structure of $\left[\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)\right.$ (TMPO)]. ${ }^{185}$ The UV photoel ectron spectra of cis-[Pt$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{~L}_{2}$], where L stands for a variety two-electron donor ligands, have been interpreted with the aid of $\mathrm{X} \alpha$ calculations on the $\left[\mathrm{Pt}\left(\mathrm{CF}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ model system. ${ }^{186}$ The $\mathrm{Pt}-\mathrm{CF}_{3}$ bonds have been analyzed and compared to $\mathrm{Pt}-\mathrm{CH}_{3}$ bonds. $\mathrm{X} \alpha$ calculations of the wave function and of the hyperfine interactions for the $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{OH})_{2}\right]^{+}$system taken as a model of bis(ethylenediamine)platinum bis(hydrogen squarate) complexes have been used to interpret its EPR spectrum. ${ }^{187}$ Ahlrichs et al. have performed a conformational analysis, at the DFT level, of a truncated entity of a palladium-coordinated cellulose chain. ${ }^{188}$ The palladium porphyrin complex has been optimized through a Car-Parrinello-like approach, using a pseudopotential combined with a plane waves expansion of the molecular orbitals. ${ }^{189}$ The optimized geometry is in good agreement with experiment ${ }^{190}$ (with a maximum difference of $0.02 \AA$). Semiempirical calculations, either extended Hückel or FenskeHall, have been performed on systems with $\operatorname{Pd}(I I)^{191}$ or $\mathrm{Pt}(\mathrm{II})^{192}$ to sulfur bonds. Square-planar platinum(II) complexes containing 7,8-benzoquinoline and various $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{PPh}_{2}$ ligands (dppm, $\mathrm{n}=1$; dppe, $\mathrm{n}=2$; dppp, $\mathrm{n}=3$) have been optimized at the HF level with a relatively small basis set. ${ }^{193}$ The Mulliken charges of the various $\left(\mathrm{CH}_{2}\right)_{n}$ bridges have been used to compute the perturbation that in timedependent perturbation theory accounts for the emission lifetime differences when the number of methylene bridges in the complex increases. A study, limited to the HF level, has been carried out on a number of four-coordinate $\mathrm{Pt}(\mathrm{II})$ diimine complexes and five-coordinate ethylenic adducts, where the added $\mathrm{C}_{2} \mathrm{H}_{4}$ and the diimine lie in the equatorial plane of a trigonal bipyramid. ${ }^{194}$ In agreement with experiment, the five-coordinate platinum systems are comparatively more stable toward ethylene dissociation than their palladium anal ogues. Some rationalization is given via an natural bond orbital (NBO) analysis. Some care should be exercised, however, since the calculations were performed with a rather small basis set, including, in particular, a large-core pseudopotential that may lead to a spurious effect. The authors report that the minimal basis set leads to a negative eigenvalue (corresponding to an antisymmetric stretching of the two $\mathrm{M}-\mathrm{N}$ bonds) for the
second derivative matrix in the symmetric fivecoordinate dihalogeno systems. The case of the dichloro complex is particularly striking. When a larger basis set is used, the geometry relaxation of the diimine ligand leads to a nonsymmetrical structure in which one nitrogen atom is quite far, at 2.80 \AA, from the platinum atom. Thus, one may wonder whether this structure would not in fact correspond to an intermediate on the pathway of a substitution process (vide infra). Clearly more work is needed on this interesting topic. The system trans-methyl-azidobis(triisopropyl phosphine)platinum(II) $\left[\mathrm{PtN}_{3}\left(\mathrm{CH}_{3}\right)-\right.$ $\left(\mathrm{PiPr}_{3}\right)_{2}$] has been calculated by Frenking in order to shed more light on problems arising with the X-ray crystal structure determination of the $\mathrm{Pt}-\mathrm{N}_{3}$ moiety. ${ }^{195}$ An ONI OM-type method, which allows one to combine various levels of theory within a molecule, has been used. In the present case the inner core of the system " $\mathrm{PtN}_{3}\left(\mathrm{CH}_{3}\right) \mathrm{P}_{2}$ " is described at the DFTB3LYP level and the phosphine ligands at the HF level. The computed IR frequencies associated to the N_{3} ligand are in good agreement with experiment. On the other hand, the corresponding computed distances and the experimental ones do not agree, thus confirming some artifact in the X-ray crystal structure determination. ${ }^{195}$

There have been a few studies dealing with Pt(IV) or $\mathrm{Pd}(\mathrm{IV})$ complexes. The isomerism between the zwitterionic $\mathrm{M}(\mathrm{II})^{-} \cdots \mathrm{H}-\mathrm{N}^{+}$and the neutral $\mathrm{N}-\mathrm{M}(\mathrm{IV})-\mathrm{H}$ forms in palladium and platinum complexes (whereN stands for an amine-type ligand) has been addressed recently. Experimentally, isomers of both types have been isolated. ${ }^{196,197}$ Earlier calculations, carried out either at the SCF or CASSCF level but with a rather limited active space, ${ }^{197}$ indicated the zwitterionic system as being the most stable. However, nondynamical correlation effects assodiated with the description of the covalent metal-hydrogen bond that is formed upon protonation of the metal reverse this order. They yield the M(IV) form as the most stable one and more for Pt than for Pd (in line with the known greater stability of $\mathrm{Pt}(\mathrm{IV})$ complexes). ${ }^{198-200}$ The optimized structure of the $\mathrm{Pt}(\mathrm{IV})$ complex $\left[\mathrm{PtMe} \mathrm{e}_{2}(\mathrm{H})\left\{\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{N}-\mathrm{NH}\right)_{3} \mathrm{BH}\right],{ }^{199}\right.$ where $\left[\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{N}-\mathrm{NH}\right)_{3} \mathrm{BH}\right]^{-}$is taken as a model of a tris(pyrazolyl)borate ligand ([(pz) $\left.\left.)_{3} \mathrm{BH}\right]^{-}\right)$, is in good agreement with an X-ray crystal structure of [Pt-$\mathrm{Me}_{2}(\mathrm{H})\left\{\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3} \mathrm{BH}\right]^{201}$ which was published subsequently. Studies of the solvation effects on such systems are currently under way. ${ }^{202,203}$ The cis-trans isomerism in another $\mathrm{Pt}(\mathrm{IV})$ complex, viz. $\mathrm{PtCl}_{4}{ }^{-}$ (pyridine) ${ }_{2}$, has also been studied recently. ${ }^{204}$ On the basis of NL-DFT calculations that give good agreement with the experimental structure of the trans isomer, the cis isomer is found less stable by 10.1 kcal mol^{-1}. DFT-B3LYP calculations have been carried out on $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{IV}) \alpha$-diimine complexes of formula $\left[P t M e_{2}(H N=C H C H=N H)\right]$ and $\left[\operatorname{PtMe}_{4}(\mathrm{HN}=\right.$ $\mathrm{CHCH}=\mathrm{NH})$], in conjunction with detailed spectroscopic and electrochemical studies on systems with substituted α-diimines. ${ }^{205}$ The computed orbital sequence points in both cases to a LUMO of α-diimine π^{*} character, in agreement with the UV spectra and
with the EPR results for the one-electron-reduced species. ${ }^{205}$

Some other studies have been performed that are related to the influence or to the interaction of the surroundings with metal complexes. We have al ready mentioned the study on the solvation (in dichloromethane) of $\mathrm{Pd}(\mathrm{IV})$ complexes. ${ }^{203}$ The behavior in acid solution of metal carboxylate complexes, which can act as catalysts for the heterolytic cleavage of a $\mathrm{C}-\mathrm{H}$ bond, has been addressed: ${ }^{206}$ the reaction of palIadium diformate $\left[\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\right]$ with two formic acid molecules has been shown to yield a diformatediformic acid $\left[\mathrm{Pd}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{2}\left(\mathrm{HCO}_{2} \mathrm{H}\right)_{2}\right]$ in which the formate ligand is bound in a η^{1} fashion to allow coordination of the carbonyl oxygen atom of $\mathrm{HCO}_{2} \mathrm{H}^{2}{ }^{206}$ The process is exothermic by $66 \mathrm{kcal} \mathrm{mol}^{-1}$ at the HF level, i.e., $33 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ per acid molecule. This is much more than the association energy of the formic acid which is estimated to be between 16 and 18 kcal mol^{-1}. Similar features have been also found for palladium trifluoroacetate and trifluoroacetic acid. Hence, the authors conclude that palladium dicarboxylate in trifluoroacetic acid solution will add two acid molecules per metal atom. In the course of a comprehensive study of ligand-field effects in the hydrated divalent and trivalent metal ions of the first- and second-row transition metals, Wahlgren et al. have computed the $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ system at the SCF and CASSCF/MRCI levels. ${ }^{207}$ The ground state corresponds to a low-spin square-planar structure. This can be explained by ligand-field theory. Siegbahn and Crabtree have studied, at the DFT-B3LYP level, the relative stability of the cis and trans isomers of $\left[\mathrm{PdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ surrounded by water molecules (up to 4) to mimic the solvation sphere (when water is a solvent). ${ }^{208}$ Solvation effects of the bulk have been accounted for by SCRF calculations (with effects up to the hexadecapole moments of the sol ute). It is found that the extra water molecules prefer to make hydrogen bonds with the two coordinated water molecules rather than sitting above and below the coordination plane. Without inclusion of the bulk solvation effects, the trans form is more stable than the cis form by $4.7 \mathrm{kcal} \mathrm{mol}^{-1}$, thus by a greater extent than that found experimentally (0.9 kcal mol^{-1})..$^{209} \mathrm{~A}$ similar difference is found when the effects of the bulk are included up the quadrupole moment on either the $\left[\mathrm{PdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ or $\left[\mathrm{PdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ systems. That the same results are obtained, whether one adds two or six water molecules, would indicate that it should not be necessary to include water molecules explicitly once the coordination sphere has been saturated. The convergence of the multipolar expansion of the solute is also analyzed. ${ }^{208}$
A qual itative study of the axial bonding capabilities of square-planar $\mathrm{d}^{8}-\mathrm{ML}_{4}$ complexes (including Pd and Pt complexes) has been made, using extended Hückel calculations and structural correlations. ${ }^{210}$ The axial coordination of a Lewis base enhances the nucleophilicity of the metal center (via its dz^{2} orbital). Conversely, its accepting capability (via its p_{z} orbital) is increased by the axial bonding of a Lewis acid. The structural implications have also been discussed. ${ }^{210}$

Dolg, Pyykkö and Runeberg ${ }^{159}$ have very thoroughly investigated the closed-shell interactions in the $\mathrm{d}^{8}-\mathrm{s}^{2}$ bonded $\left[\mathrm{T} \mathrm{I}_{2} \mathrm{Pt}(\mathrm{CN})_{4}\right]$ compound. This system was analyzed previously, via a NL-DFT method (including spin-free relativistic effects and spin-orbit coupling), but the geometry was not optimized. ${ }^{211}$ Calculations by Dolg et al. range from HF to MP2 up to CASSCF/MRCI or CASSCF/ACPF with BSSE and spin-orbit corrections. At the highest level of calculation a discrepancy still remains for the $\mathrm{TI}-\mathrm{Pt}$ bond length which amounts to $2.88 \AA$ theoretically and $3.14 \AA$ in the X-ray crystal structure. ${ }^{212}$ Some estimate of the crystal-field effect has been obtained by putting fractional negative charges around the system to mimic the five cyanides surrounding each thallium atom. The increase of the TI-Pt bond length obtained on increasing the fractional charge suggests a sizable surrounding effect on the length. The effect of the surroundings has been also considered in a very comprehensive study of the complexes $\mathrm{MH}_{\mathrm{x}}{ }^{2-}$ and $\mathrm{MCl}_{\mathrm{y}}{ }^{2-}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt} ; \mathrm{x}=2,4,6 ; \mathrm{y}=4,6)$ in the crystalline $\mathrm{A}_{2} \mathrm{MH}_{\mathrm{x}}$ and $\mathrm{A}_{2} \mathrm{MCl}_{y}$ compounds ($\mathrm{A}=\mathrm{Na}$, $\mathrm{K} ; \mathrm{M}=\mathrm{Pd}, \mathrm{Pt}) .{ }^{213}$ To this end the anionic systems are embedded in a Madelung potential but with a cutoff that accounts for the short-range repulsion from the nearest neighbors. The quantum mechanical calculations are of DFT type with inclusion of the relativistic effects through first-order perturbation theory. It is shown that the crystal field strongly shifts the $\mathrm{MH}_{6}{ }^{2-} \rightarrow \mathrm{MH}_{4}{ }^{2-}+\mathrm{H}_{2}$ and $\mathrm{MCl}_{6}{ }^{2-} \rightarrow \mathrm{MCl}_{4}{ }^{2-}$ $+\mathrm{Cl}_{2}$ disproportionation equilibria to the right except for $\mathrm{PdCl}_{6}{ }^{2-}$ and $\mathrm{PtCl}_{6}{ }^{2-}$, thus in agreement with the known stability of these systems in the crystal. A similar study has also been performed on theternary hydrides $\mathrm{A}_{2} \mathrm{MH}_{2}(\mathrm{~A}=\mathrm{Li}, \mathrm{Na} ; \mathrm{M}=\mathrm{Pd}, \mathrm{Pt}) .{ }^{214}$ Finally, we briefly quote-since it is at the borderline of the scope of this review-a careful analysis of the change of the CO stretching frequency in the $\mathrm{Pt}-\mathrm{CO}$ complex due to the interaction of Pt with zeolite protons. ${ }^{215}$ DFT calculations were used on model clusters mimicking some zeol ites. They support the experimental hypothesis that the platinum species in mordenite are electron deficient. However, it is also concluded that this concept should be used with care since some other factors are found to influence the $\mathrm{C}-\mathrm{O}$ frequency shift, such as the formation of additional coordination bonds and the electric field set up by the environment.
Finally one should cite here a few quantum mechanical investigations that have been devoted to cisplatin and its derivatives. In addition to ab initio calculations aimed at developing or improving force field parameters, ${ }^{216-219}$ one finds a few studies dealing more specifically with bonding features. ${ }^{220-222}$ Some of those have relied on DFT calculations (with Becke-Perdew corrected exchange and correlation functionals) ${ }^{72,116}$ using a relativistic pseudopotential for the platinum core and plane waves to describe the valence electrons. This methodol ogical approach was chosen as a first step toward a more difficult goal, viz. the modeling of the interaction of cisplatin with DNA by ab initio molecular dynamics. The first investigation was carried out on cisplatin, transplatin, and water-substituted cisplatin complexes. ${ }^{221}$

The results are in good agreement with the known experimental data, thus validating this methodol ogy. It has been followed by a comparison with carboplatin. ${ }^{223} \mathrm{~A}$ mixed adenine-thymine complex of trans[$\mathrm{Pt}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)_{2}$] with a bridging water molecule has also been examined through this computational approach. ${ }^{222}$ In comparison to the parent transplatin, the stronger interaction of the methylated adenine and thymine compared to chloride pushes the $\mathrm{d}_{x^{2}-y^{2}}$ orbital above some π ligand orbitals of the nucleobases, thus giving to the system the characteristics of a charge-transfer system.

III. Polynuclear Compounds

Many palladium and platinum clusters have been synthesized and structurally characterized, some of them being designed to mimic palladium or platinum surfaces and their associated reactivity. Bare metal clusters are of course the ones that are expected to meet this objective best. Experimentally, there are only a few definite characterizations of Pd_{n} and Pt_{n} bare metal clusters (for n being relatively small), and the theoretical studies of such systems are probably more numerous. We shall start by reviewing these studies. We will then switch to the dinuclear molecular complexes according to the various oxidation states of the two metals. Finally, we will consider triand polynuclear molecular clusters.

A. Bare Metal Systems

Detailed and extensive investigations, at the CASSCF/MRSDCI + relativistic configuration interaction (RCI) calculations, were carried out on Pd_{2} and Pt_{2} by Balasubramanian prior to $1990 .{ }^{224} \mathrm{In}$ most of the subsequent studies, especially for Pd_{2}, a major goal has been assessment of the accuracy of various DFT schemes through determination of the spectroscopic properties of the ground state of the two systems.
One should, however, quote a study by Blomberg et al. on Pd_{2} using the MCPF method, an all-electron basis, and including the spin-free relativistic effects through first-order perturbation theory. 225 As in Bal asubramanian's calculations, the ${ }^{3} \Sigma_{u}{ }^{+}$state made essentially of the $\left(1 \sigma_{\mathrm{u}}\right)^{1}\left(2 \sigma_{\mathrm{g}}\right)^{1}$ configuration is found to be the ground state. The corresponding dissociation energy of $10.8 \mathrm{kcal} \mathrm{mol}^{-1}$ is smaller than in Balasubramanian's work ($19.6 \mathrm{kcal} \mathrm{mol}^{-1}$) and in experiment ${ }^{226}$ (the experimental value ranges between 17.1 and $26.1 \mathrm{kcal} \mathrm{mol}^{-1}$ depending on the technique of evaluation). The computed bond length is greater ($\operatorname{Re}=2.54 \mathrm{vs} 2.48 \AA$). 1 mproving the wave function by performing a two-reference ACPF calcuIation yields a binding energy of $17.0 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1} .227$ An almost identical value ($17.8 \mathrm{kcal} \mathrm{mol}^{-1}$) is obtained when a relativistic pseudopotential is used.

In the course of a study on the CO chemisorption on model clusters of Rh and Pd, Goursot et al. ${ }^{228}$ have computed the spectroscopic properties of Pd_{2}. They used a model potential including relativistic effects and leaving out the 4 p orbitals as valence orbitals. The geometry optimization was carried out within the local spin density approximation, but the energy calculations were done with the Perdew correction ${ }^{116,229}$ to the exchange and correlation functionals.

The ${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$ground state was obtained. The ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$singlet state (made of $\left(1 \sigma_{\mathrm{u}}\right)^{2}$, i.e., from two ${ }^{1} \mathrm{~S} \mathrm{~d}^{10}$ palladium atoms), is higher in energy by $9.4 \mathrm{kcal} \mathrm{mol}^{-1}$. The computed spectroscopic values do agree with those of Balasubramanian, especially the $\mathrm{Pd}-\mathrm{Pd}$ bond distance ($\operatorname{Re}=2.46$ vs $2.48 \AA$ in Balasubramanian's work). ${ }^{224}$ The bond dissociation energy is somewhat higher ($31.1 \mathrm{kcal} \mathrm{mol}^{-1}$ instead of $19.6 \mathrm{kcal} \mathrm{mol}^{-1}$) but still fits with the experimental estimate. ${ }^{226}$

More systematic studies testing various functionals, the effect of including nonlocal corrections, and the effect of using a relativistic pseudopotential instead of an all electron orbital basis have appeared. Dixon ${ }^{230}$ and Seminario ${ }^{231,232}$ disagree on the necessity of including relativistic effects for Pd_{2}. Although Seminario's contention is that nonrelativistic calculations can yield results comparable to the very scarce experiments, his results are somewhat contradictory. ${ }^{232}$ The MP4SDTQ cal culations (carried out with a large and uncontracted but unpolarized basis set) yield $R_{e}=2.48 \AA$, in good agreement with Balasubramanian's result, but a negative binding energy. On the other hand, a correct binding energy (18.8 kcal mol^{-1}) is obtained from the NL-DFT calculations (using the Perdew-Wang 86 exchange correlation functional ${ }^{116,229}$) but at the expense of the accuracy for the $\mathrm{Pd}-\mathrm{Pd}$ bond length which is then much larger, $2.62 \AA$. The B3LYP results lie in between, with $\mathrm{D}_{\mathrm{e}}=11.7 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\mathrm{R}_{\mathrm{e}}=2.56 \AA$. The values computed for the triplet-singlet separation are also quite random. Dixon, on the other hand, advocates the necessity of including the relativistic effects. ${ }^{230}$ As expected, longer bond distances are obtained, in good agreement with Bal asubramanian's estimate, if nonlocal corrections are included. The use of a relativistic pseudopotential is crucial for getting the triplet below the singlet: the relativistic contraction and lowering of the 5 s orbital makes the promotion of an electron from 4d to 5 s easier and hence the $\left(1 \sigma_{u}\right)^{1}\left(2 \sigma_{\mathrm{g}}\right)^{1}$ configuration is more easily attained. One should also stress here that cal culations carried out with the DMol program, which does not incorporate relativistic effects, yield binding energies that are too low, ${ }^{230}$ especially at the nonlocal level. ${ }^{233}$

Zerner's INDO calculations on Pd_{2}, carried out at the HF level for the geometry optimization and at the CIS (i.e., with single excitations only) level for the calculations of the various states, ${ }^{234}$ also yield ${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$as the ground state, as do the NL-DFT calculations of Fahmi and van Santen ${ }^{136}$ (with BeckePerdew corrections and inclusion of the relativistic effects via first-order perturbation theory). The B3LYP functional, $72,235,236$ used in conjunction with a smallcore pseudopotential by either Toulhoat ${ }^{233}$ or Morokuma, ${ }^{237}$ gives results that agree with those of Balasubramanian. The bond dissociation energy ranges between 22.2 and $20.6 \mathrm{kcal} \mathrm{mol}^{-1}$, depending on the level of the basis set, and in excellent agreement with experiment. ${ }^{226}$ The fact that the B3LYP scheme is not too sensitive to the quality of the basis set was already noticed by Dixon. ${ }^{230}$ On the other hand, at the CASPT2 level a quite flexible basis set is necessary in order to obtain correct dissociation energies. ${ }^{237}$

In Pt_{2} relativistic effects are far more important than in Pd_{2}. The difference in the electronic state ordering, ${ }^{3} \mathrm{D}$ below ${ }^{1} \mathrm{~S}$ for Pt , also has consequences on the state ordering of the dimer. Here too a reference calculation is the earlier one of Balasubramanian at the CASSCF/FOCI +RCI level. ${ }^{238} \mathrm{In}$ the absence of spin-orbit coupling, the lowest state is ${ }^{3} \Pi_{u}$, followed by ${ }^{3} \Sigma_{g}-$ which is almost degenerate at $1.1 \mathrm{kcal} \mathrm{mol}^{-1}$ higher, and by ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$which lies 5.1 kcal mol^{-1} above ${ }^{3} \Pi_{\mathrm{u}}$. The ground state is ${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}\left(0_{\mathrm{g}}{ }^{+}\right)$arising from the $\delta_{u}{ }^{2}$ configuration. The next excited states are quite low in energy and also arise from δ-type orbitals, viz. $\delta_{\mathrm{u}}{ }^{3} \delta_{\mathrm{g}}{ }^{3}$ for ${ }^{3} \Gamma_{\mathrm{u}}(5 \mathrm{u})$ which lies only 3.1 kcal mol^{-1} above the ground state and $\delta_{\mathrm{u}}{ }^{3} \pi_{\mathrm{g}}{ }^{3}$ for ${ }^{3} \Phi_{\mathrm{u}}(4 \mathrm{u})$ at $1.8 \mathrm{kcal} \mathrm{mol}^{-1}$ above the ground state. The groundstate equilibrium bond length is slightly smaller than that in $\mathrm{Pd}_{2}, 2.46 \AA$ instead of $2.48 \AA$. A recent measurement using STM on graphite gives $2.45 \pm$ $0.26 \AA .^{239}$ Spin-orbit coupling also decreases the bond dissociation energy in the ground state from 53.0 to 45.0 kcal mol^{-1}, thus smaller than the experimental estimates which range between $66.4 \pm$ 6.0^{240} and $85.6 \pm 14.3 \mathrm{kcal} \mathrm{mol}^{-1,} 241$ a very recent determination giving a value of $72.4 \pm 0.5 \mathrm{kcal}$ $\mathrm{mol}^{-1.89}$ That Pt_{2} is characterized by a cluster of states close in energy has also been found in the CASSCF and GVB + MRCI calculations of Wang and Carter. ${ }^{242}$ Their computed Pt-Pt bond dissociation energies are too small, however (26.7 and 26.6 kcal mol^{-1} at the CASSCF for the ${ }^{3} \Sigma_{g}$ - ground state and the ${ }^{3} \Gamma_{u}$ state. respectively; the GVB/CI increases the value for the ${ }^{3} \Gamma_{\mathrm{u}}$ state to $36.1 \mathrm{kcal} \mathrm{mol}^{-1}$). The $\mathrm{Pt}-$ Pt bond is too long ($\sim 2.7 \AA$). This may be due to the Iarge-core pseudopotential used ${ }^{124}$ and to its associated basis set, although Balasubramanian's contention is that large-core pseudopotentials work satisfactorily. Remember that similar calculations by Smith and Carter ${ }^{84}$ on PtCO also led to a bond energy that is too small with respect to experiment (vide supra). The very recent DFT-B3LYP and CASPT2 calculations of Morokuma and co-workers ${ }^{237}$ are in better agreement with Balasubramanian. The ground state is found to correspond to the ${ }^{3} \Sigma_{g}{ }^{-}$state, other states coming from different d hole combination being close in energy. The computed $\mathrm{Pt}-\mathrm{Pt}$ bond length with their smaller basis set is $2.39 \AA$ at the B3LYP level and $2.44 \AA$ at the CASPT2 level. The best basis set at the CASPT2 level yields $2.41 \AA$. The corresponding dissociation energies range between 56.2 kcal mol^{-1} at the B3LYP level and $60.5 \mathrm{kcal} \mathrm{mol}^{-1}$ at the CASPT2 level with the best basis set. This last value supports the lower estimates for the experimental value.

The $\mathrm{Pd}_{3}, \mathrm{Pt}_{3}$, and higher homologues Pd_{n} and Pt_{n} have been studied quite thoroughly, the palladium systems more than the platinum systems. The first study on Pd_{3}, carried out by Balasubramanian at the CASSCF/MRSDCI +RCI level, concluded to a ${ }^{1} \mathrm{~A}_{2}$ ground state, with many low-lying, nearly degenerate states between 7 and $10 \mathrm{kcal}^{-1}$ above. ${ }^{243}$ The overall separation of these states agrees with the observed photoelectron spectrum of $\mathrm{Pd}_{3}{ }^{-} .244$ The ground-state equilibrium geometry is an acute triangle, with two long bonds of $2.67 \AA$ and a short one of $2.47 \AA$ at the
base of the triangle (this corresponds to an angle at the apex of 55°). The ground state is bound by 76 kcal mol^{-1} with respect to the Pd_{2} dimer $+\mathrm{Pd}\left({ }^{3} \mathrm{D}\right)$ and has an atomization energy of $124 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to $\mathrm{Pd}\left({ }^{3} \mathrm{D}\right)$. Using the computed ${ }^{1} \mathrm{~S}-{ }^{3} \mathrm{D}$ separation of $14 \mathrm{kcal} \mathrm{mol}^{-1}$ for Pd , this yields an atomization energy of about $82 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to $\mathrm{Pd}\left({ }^{1} \mathrm{~S}\right)$. A more recent calculation of Blomberg et al., 227 using another relativistic potential to include the spin-free relativistic effects, yields a ${ }^{3} B_{2}$ state as the ground state (but different from a low-lying ${ }^{3} \mathrm{~B}_{2}$ state obtained by Balasubramanian).
It is difficult to make a comparison of the above results with the results of the DFT-B3LYP calculations by Seminario on $\mathrm{Pd}_{3}{ }^{232}$ since no symmetry assignment is done. A triplet for an equilateral triangular form is said to be the ground state. A singlet with a triangular geometry is found 3.2 kcal mol^{-1} above the ground state. As for Pd_{2}, the computed Pd-Pd bond length ($2.70 \AA$) seems to be too long, most likely because of the neglect of relativistic effects. Valerio and Toulhouat's calculations ${ }^{233}$ that include spin-free relativistic effects via the pseudopotential give shorter bond lengths, e.g., $2.54 \AA$ for the ${ }^{3} B_{2}$ state. This ${ }^{3} B_{2}$ state, which is computed to be the ground state, has a nonequilateral geometry, the distortion being nevertheless relatively small: the angle θ at the apex of the triangle amounts to 65.6°. ${ }^{3} \mathrm{~B}_{2}$ being the ground state is in agreement with the calculations by Blomberg et al. but at variance with Balasubramanian's results. Note, however, that the open-shell singlet ${ }^{1} \mathrm{~A}_{2}$ cannot be computed within the present DFT calculations. One singlet ${ }^{1} \mathrm{~A}_{1}$ has been computed to lie $5.6 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than ${ }^{3} \mathrm{~B}_{2}$. Similar results emerge from Morokuna's study, ${ }^{245}$ except for the ground state which is found to be ${ }^{3} \mathrm{~B}_{1}$. However, the ${ }^{3} \mathrm{~B}_{2}$ state is near-degenerate with the ${ }^{3} \mathrm{~B}_{1}$ state. Clearly the close proximity of all these states makes the ground-state assignment especially difficult for Pd_{3}. However, this is probably of less importance when one studies the reactivity of the cluster. In this case the approach of a reactant should split these states to a greater extent. A final result to be mentioned is that these two DFT studies do agree on the atomization energy, around 60 kcal mol^{-1}, i.e., somewhat less than in Balasubramanian's study.
Wang and Carter extended their investigation on Pt_{2} to the Pt_{3} cluster using the same methodology. ${ }^{242}$ They found a weak $d-d$ coupling that leads to a manifold of states quite close in energy. The ${ }^{1} \mathrm{~A}_{1}$ singlet state (arising from one d^{10} and two $\mathrm{d}^{9} \mathrm{~s}^{1}$ atoms) is the lowest one and has an equilateral triangle structure. Thus, the dominant interactions holding the platinum atoms together are, in their calculations, essentially of s-s type, the delectrons remaining localized on each metal center. The computed bond lengths are quite long ($2.79 \AA$), and the atomization energy ($50.3 \mathrm{kcal} \mathrm{mol}^{-1}$ at the best level of calculation) seems to be relatively small, as it was for Pt_{2}. The one valence electron pseudopotential that we mentioned in the context of the studies on $\mathrm{Pt}-\mathrm{H}$ has been used by the same authors to calculate Pt_{3} (and Pt_{4}). ${ }^{246}$ The equilibrium geometry has rather

Figure 4. Equilibrium geometries for the low-lying states of Pd_{4}. (Reprinted with permission from ref 247.) Copyright 1995.
long bonds (two long, $3.05 \AA$, and a one short, 2.74 \AA) and an atomization energy of $49.6 \mathrm{kcal} \mathrm{mol}^{-1}$. As mentioned by M orokuma and co-workers, ${ }^{245}$ the fact that these two calculations give such a low value for the atomization energy is probably the result of using a large-core pseudopotential (and also a rather small basis). Their DFT-B3LYP calculations yield shorter bond lengths and a much larger atomization energy ($\sim 120 \mathrm{kcal} \mathrm{mol}^{-1}$). ${ }^{245}$ The ground state in their case is also a ${ }^{1} \mathrm{~A}_{1}$ state (in $\mathrm{C}_{2 v}$) but at variance with Wang and Carter it is made primarily of three $\mathrm{d}^{9} \mathrm{~s}^{1}$ platinums. Here too, low-lying excited states, most of them being triplets, are found very close in energy.

Clusters of higher nuclearity have also been computed. Dai and Balasubramanian ${ }^{247}$ chose to use a large-core relativistic pseudopotential and high-level methods, viz. CASSCF/MRSDCI, for investigating the Pd_{4} and Pt_{4} systems. Their equilibrium geometries for the low-lying states together with the corresponding energy separations are shown in Figures 4 and 5, for Pd_{4} and Pt_{4}, respectively. The ground-state configuration is ${ }^{3} T_{1}$, as also found earlier by Goursot et al. ${ }^{228}$ The computed atomization energy (relative to Pd in the ${ }^{1} \mathrm{~S}_{0}$ state) is 117 kcal mol^{-1} at the CASSCF/MRSDCI level and 129.7 kcal mol^{-1} when the Davidson correction for the quadruple excitations is included. For Pt_{4}, a value of $272.2 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (relative to $\mathrm{Pt}{ }^{3} \mathrm{D}_{3}$) has been obtained. In these calculations, as in the calculations of Pd_{4} by either Goursot et al. ${ }^{228}$ or Fahmi and van Santen, ${ }^{136}$ the T_{d} Symmetry was not allowed to relax into a lower symmetry. Zerner and co-workers, ${ }^{234}$ as well as Valerio and Toulhouat, ${ }^{233}$ have allowed such a relaxation: in both cases a $\mathrm{C}_{2 v}$ Jahn-Tellerdistorted structure is found corresponding to a ${ }^{3} \mathrm{~B}_{2}$ state. The atomization energy computed at the DFTB3LYP level by Valerio and Toulhouat is much smaller than the one of Balasubramanian, 114.9 kcal mol^{-1}, giving a value per bond much closer to the bulk value and following a smooth trend along the series $n=1,3,4,6 .{ }^{233}$ One should finally mention that the

Tetrahedron
${ }^{3} \mathrm{~T}_{1} \quad 0$ Keavimol

Tetrahedron

Rhombus
${ }^{5} \mathrm{~B}_{3 \mathrm{~g}} \quad 11 \mathrm{Kcal} / \mathrm{mol}$

Figure 5. Equilibrium geometries for the low-lying states of Pt_{4}. (Reprinted with permission from ref 247.) Copyright 1995.

MRCIS-INDO calculations on the Pd_{13} cluster ${ }^{234}$ also yield the less symmetrical $D_{5 d}$ structure as being more stable than the I_{h} icosahedral structure.
The study on PtZr and $\mathrm{Pt}_{3} \mathrm{Zr}$ by Wang and Carter has focused on the metal-metal bonding between early and late transition metals. ${ }^{248}$ The same methodology as for Pt_{2} and Pt_{3} was used. PtZr has been analyzed via a CASSCF treatment using optimized geometries, whereas the greater size of $\mathrm{Pt}_{3} \mathrm{Zr}$ required the use of GVB-type calculations and a fixed $\mathrm{C}_{3 v}$ geometry. The most important result from this study-which would most likely survive better calculations, since the difference between the ionization potential of Zr and the electron affinity of Pd is reproduced correctly-is that a significant electron transfer takes place from Zr to Pt , or from Zr to Pt_{3}. This is at variance with the initial assumption based on the empirical theory of Engel and Brewer ${ }^{249-251}$ but could have been expected from the relative work functions. This charge transfer, as well as sd-sd hybrid bonding between Zr and Pt , contributes to the higher stability of these heterometallic systems compared to the homometallic ones.
The binding of atoms or of small molecules to some of these bare metallic clusters has also been addressed. As far as atoms are concerned, Balasubramanian and co-workers have looked at the interaction of the hydrogen atom with $\mathrm{Pt}_{2},{ }^{34} \mathrm{Pt}_{3}$, and $\mathrm{Pd}_{3} .{ }^{252}$ In the platinum study, the spin-orbit effects have been included explicitly after the CASSCF/MRSDCI treatment, via the relativistic configuration interaction (RCI) computational scheme. For $\mathrm{Pt}_{2}+\mathrm{H}$, all states arising from the $\mathrm{Pt}_{2}\left({ }^{3} \Sigma_{g}-\right)+\mathrm{H}\left({ }^{2} \mathrm{~S}\right)$ were considered. The ground state of ${ }^{2} \mathrm{~A}_{2}$ symmetry in the absence of spin-orbit coupling corresponds to a bridged structure with a Pt-Pt distance of $2.48 \AA$ and a Pt-H distance of $1.70 \AA$. The ${ }^{2} \mathrm{~B}_{2}$ state is near degenerate, lying only $1.4 \mathrm{kcal} \mathrm{mol}^{-1}$ higher. On inclusion of the spin-orbit effects, these two states mix substantially and the splitting between them is slightly increased
to $2.2 \mathrm{kcal} \mathrm{mol}^{-1}$. Both $\mathrm{Pt}-\mathrm{Pt}$ and $\mathrm{Pt}-\mathrm{H}$ distances are shortened slightly, by $0.02 \AA$ A. The bonding, which is quite covalent, is best described in terms of a threecenter four-electron bond. The dissociation energy, $59 \mathrm{kcal} \mathrm{mol}^{-1}$, is smaller than that for $\mathrm{Pt}-\mathrm{H}$ (72 kcal mol^{-1}, vide supra). In $\mathrm{Pt}_{3} \mathrm{H}$, the interaction of H with the trimetallic cluster takes place preferentially al ong the C_{3} axis. ${ }^{252}$ The relativistic effects are found to be more important for the excited states than for the ground state (which is ${ }^{2} \mathrm{~A}_{2}$ in the absence of spinorbit coupling). The $\mathrm{Pt}-\mathrm{H}$ bond, $1.80 \AA$, is longer than that in $\mathrm{Pt}_{2} \mathrm{H}$. The bond dissociation energy, 62.2 kcal mol^{-1}, is also weaker than in PtH. In contrast, in $\mathrm{Pd}_{3} \mathrm{H}$ the bond dissociation energy is higher than that in $\mathrm{PdH}, 71.5 \mathrm{kcal} \mathrm{mol}^{-1}$ instead of $55.4 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{21}$

Not surprisingly, the interaction of Pt_{3} with Au also leads to $\mathrm{C}_{3 v}$ geometry with a ${ }^{2} \mathrm{~A}_{2}$ ground state. ${ }^{253}$ The optimized structure compares well with X-ray crystal structures of related molecular complexes displaying a $\mathrm{Pt}_{3} \mathrm{Au}$ or $\mathrm{Pt}_{3} \mathrm{Au}_{2}$ core. ${ }^{254}$ The study was carried out again at the CASSCF/MRSDCI level with a largecore relativistic potential and inclusion spin-orbit coupling via the RCl technique. As for $\mathrm{Pt}_{3} \mathrm{H}$, the effects of spin-orbit coupling are relatively small in the ground state but significant in the excited states. Valerio and Toulhouat have investigated the interaction of either the sulfur atom or the chlorine atom with $\mathrm{Pd}_{\mathrm{n}}(\mathrm{n}=2,3,4,6)$ at the DFT level using the B3LYP functional. ${ }^{255}$ The small-core relativistic potential of Hay and Wadt was used with its associated basis and the polarized $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis for S and Cl . The binding has been analyzed as a function of the increasing number of palladium atoms, to mimic chemisorption on small palladium particles. This topic is out of the scope of the present review. We can, nevertheless, mention that a careful analysis of the wave function indicates that the $\mathrm{Pd}-\mathrm{S}$ or $\mathrm{Pd}-\mathrm{X}$ bonds are of a charge-transfer type.

The interaction of $\mathrm{N}_{2}, \mathrm{CO}$, and $\mathrm{C}_{2} \mathrm{H}_{4}$ with Pd_{2} and/ or Pt_{2} has also been examined. We have already alluded above to the calculations by Blomberg and Siegbahn for the $\mathrm{Pd}_{2} \mathrm{~N}_{2}$ system. ${ }^{225}$ A relatively large binding energy between Pd_{2} and N_{2} has been found, the value of $15 \mathrm{kcal} \mathrm{mol}^{-1}$ actually computed beingaccording to the authors-a lower limit of the real result which should be around $20 \mathrm{kcal} \mathrm{mol}^{-1}$. Two structures are found of almost equal stability (within 1 kcal mol^{-1}), the bridge end-on, 5, and one with a side-on parallel geometry, 6. The frequencies of N_{2}

have al so been computed and discussed in connection with N_{2} chemisorption on palladium surfaces. In both structures the charge transfer to N_{2} is low, due to the relatively large ionization potential of Pd from $d^{9} s^{1}$ to $d^{8} s^{1}$. In contrast to $\mathrm{Pd}_{2} \mathrm{~N}_{2}$, the end-on-bridged structure of $\mathrm{Pd}_{2} \mathrm{CO}$ in the ${ }^{1} \mathrm{~A}_{1}$ electronic ground state is found to be more stable than the linear end-on geometry by more than $30 \mathrm{kcal} \mathrm{mol}^{-1}$ at either the

MP2, CASSCF, or CASSCF/MRSDCI level. At this highest level of computation, the difference is 34.6 kcal mol ${ }^{-1}$. ${ }^{256}$ The approach of CO was also studied and found to be almost barrierless, the barrier being only $3.5 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. An analysis of the wave function reveals a small σ donation from CO and a significant back-donation from the two palladium atoms. Similar calculations were performed earlier on $\mathrm{Pt}_{2} \mathrm{CO} .{ }^{257} \mathrm{As}$ in $\mathrm{Pd}_{2} \mathrm{CO}$, the energetically lowest energy structure is the ${ }^{1} \mathrm{~A}_{1}$ state with CO in a bridging position, close to the Pt-Pt bond. Yet, in contrast to $\mathrm{Pd}_{2} \mathrm{CO}$, the wave function is no longer dominated by a single determinant but is highly multiconfigurational near the equilibrium structure. As a consequence, the MP2 value of the dissociation energy is much too high. The most accurate value at the CASSCF/MRSDCI +Q level is $49 \mathrm{kcal} \mathrm{mol}{ }^{-1}$, thus larger than in the $\mathrm{Pd}_{2} \mathrm{CO}$ system. There is also a significant barrier, 17.1 kcal mol^{-1} (at the CASSSCF level), to reach the groundstate structure from Pt_{2} and CO at infinite separation. This may explain the differences with the Pd surfaces, in particular the preferential formation of the atop sites for small CO coverage on Pt surfaces.

In $\mathrm{Pd}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, the side-on parallel geometry is also found, at the DFT-B3LYP level, to be more stable than the end-on geometry ${ }^{136}$ but to a much larger extent: the interaction energies are 31 and 23 kcal mol^{-1}, respectively. This is due to a greater charge transfer and to greater electrostatic attractive interactions. The Pd-Pd bond is lengthened somewhat with respect to $\mathrm{Pd}_{2}, 2.74 \AA$. This value is very similar to the one in $\mathrm{Pd}_{2} \mathrm{~N}_{2}$. In the same study Fahmi and van Santen also analyzed the bonding of $\mathrm{C}_{2} \mathrm{H}_{4}$ to Pd_{n} ($\mathrm{n}=3-6$). F or $\mathrm{n}=3-5$, the side-on parallel bonding leads to a breaking of the Pd-Pd bond that spans the $\mathrm{C}-\mathrm{C}$ bond, the $\mathrm{Pd} \cdots \mathrm{Pd}$ distance decreasing on going from $\mathrm{Pd}_{3}\left(4.23 \AA\right.$) to Pd_{5} ($3.04 \AA$). The binding energies also decrease along the series.

The work on the heterobimetallic cluster has been extended to a study of the interaction of ZrPt with either H or $\mathrm{CH}_{3} .{ }^{248} \mathrm{As}$ in ZrPt alone, Zr acts as an electron donor in (ZrPt)H or (ZrPt) CH_{3}. The metal-H and metal $-\mathrm{CH}_{3}$ bond strengths are increased upon "alloy" formation with the second metal. The increase is largest for the metal-hydride bond, however. Note that one in fact finds a feature that was already noticed by Siegbahn for PdH and PdH_{2}, namely, preparation of the metal by the first bond formation to the correct covalency for the second bond. The implications of these findings for catalytic reactions of hydrocarbons on alloys are discussed. ${ }^{248}$

B. Dinuclear Molecular Complexes

1. $M(0)-M(0)$ Complexes

The interaction in the dinuclear complexes $\left[\mathrm{Pt}_{2}-\right.$ $\left.\left(\mathrm{PH}_{3}\right)_{4}\right],\left[\mathrm{PtPd}\left(\mathrm{PH}_{3}\right)_{4}\right]$, and $\left[\mathrm{Pd}_{2}\left(\mathrm{PH}_{3}\right)_{4}\right]$, which can been classified as being of "aurophilic" type, ${ }^{258}$ has been revisited by Sakaki et al. at levels up to MP4SDQ. ${ }^{259}$ Experimentally, a diplatinum complex with a bulky ligand on the phosphorus atoms (which increase the kinetic stability) is known ${ }^{260}$ and was investigated long ago at the EH level. ${ }^{261}$ The calculations of Sakaki use the relativistic small-core pseudo-
potential of Hay and Wadt ${ }^{68}$ and a quite large basis set with polarization functions on the metal and phosphorus atoms. The calculations point clearly to the importance of dispersion interactions (in addition to some rehybridization of the d_{σ} orbital to minimize the $\mathrm{d}_{\sigma}-\mathrm{d}_{\sigma}$ repulsion): The interaction is repulsive at the HF level, and some stabilization with respect to the two monomers is obtained only at the correlated level. At the best level of theory (MP4SDQ with the polarized basis set and correction from the basis set superposition error), the metal-metal bond energy amounts to $4.4,4.1$, and $3.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\mathrm{Pt}-$ $\mathrm{Pt}, \mathrm{Pd}-\mathrm{Pt}$, and $\mathrm{Pd}-\mathrm{Pd}$ systems, respectively. The decrease al ong the series further supports the crucial role of the dispersion interactions.
Although not being directly relevant to the metal metal interaction in $\operatorname{Pd}(0)$ or $\operatorname{Pt}(0)$ complexes, one may cite here extended Hückel calculations carried out by Harvey and co-workers in a framework of flash photolysis studies of $\left[\mathrm{M}_{2}(\mathrm{dba})_{3}\right]$ complexes ($\mathrm{M}=\mathrm{Pd}$, Pt; dba = dibenzylideneacetone). ${ }^{262}$ These calculations support the experimental assignment of the spectra.

2. $M(I)-M(I)$ Complexes

There have been many more studies pertaining to the analysis of the metal-metal bond in $\operatorname{Pt}(1)$ and $\operatorname{Pd}(I) d^{9}-d^{9}$ dimetallic or polymetallic clusters. Many of them have been carried out at the extended Hückel (EH) level in conjunction with experimental studies. Thus, the bonding in the $\left[\mathrm{Pd}_{2}(\mathrm{dmb})_{2} \mathrm{X}_{2}\right]$ unbridged complexes (dmb $=1,8$-diisocyano-p-menthane; $\mathrm{X}=$ Cl, Br) has been analyzed via EH calculations on the model complex $\left[\mathrm{Pd}_{2}\left(\mathrm{CNCH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{263}$ Two limiting conformations corresponding to either a perpendicular or a coplanar arrangement of the two trans[(CNCH $\left.)_{2} \mathrm{CIPd}\right] \mathrm{d}^{9}$ trigonal $\left(\mathrm{C}_{2 \mathrm{v}}\right)$ units have been considered. Not unexpectedly, the greater ligand-field effect of the two trans-isocyanide ligands orients the d_{σ} orbital along the $\mathrm{C}-\mathrm{Pd}-\mathrm{C}$ axis in the HOMO as in the LUMO (via a mixing between $d_{z^{2}}$ and $d_{x^{2}-y^{2}}$) and the bonding in the HOMO is achieved through enlarged equatorial lobes of the d_{σ} orbital. The energy difference between the two forms is not very high, $2.3 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$, consistent with the cylindrical σ bonding between the two metals. However, it might also arise from the rather long $\mathrm{Pd}-\mathrm{Pd}$ bond, $2.72 \AA$. Such a long bond would prevent large steric interactions between the isocyanideligands. EH calculations which had been performed earlier on similar bisplatinum (I) complexes, either for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mathrm{CO}_{2}\left(\mathrm{PH}_{3}\right)_{3}\right]^{264}\right.$ or $\left[\mathrm{Pt}_{2}(\mathrm{CNH})_{2} \mathrm{Cl}_{2}\right]^{265}$ with a shorter $\mathrm{Pt}-\mathrm{Pt}$ bond length of about $2.6 \hat{\AA}$, yielded much higher barriers ranging between 53 and $85 \mathrm{kcal} \mathrm{mol}^{-1}$. On the other hand, recent experiments show that the $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}\left(\mathrm{CO}_{2}\right)_{2}\left(\mathrm{PR}_{3}\right)_{3}\right]$ systems are fluxional..$^{266} \mathrm{~A}$ more thorough EH investigation on $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2}\left(\mathrm{PH}_{3}\right)_{3}\right]$ carried out simultaneously suggests that this fluxionality might be accounted for by the involvement of an intermediate of $\mathrm{C}_{2 n}$ symmetry having the two carbonyls bridging the Pt-Pt bond. ${ }^{266}$ At the EH level, this structure is only $2.4 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ higher in energy than the unbridged structure. The barrier to reach it amounts to only $10.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The bonding in bridged
species has been analyzed also, either in $\operatorname{Pd}(1)-$ $\mathrm{Pd}(\mathrm{I})$ complexes bridged by indenyl or isocyanide ligands ${ }^{267}$ or in $\mathrm{Pt}(\mathrm{I})-\mathrm{Pt}(\mathrm{I})$ complexes bridged by sulfur ligands. ${ }^{268}$

As far as ab initio calculation are concerned, a few HF, post-HF, or DFT calculations have been performed. Provencher and Harvey have again considered, in relationship with some photoprocesses observed experimentally, the unbridged $\left[\mathrm{Pd}_{2}(\mathrm{CN}-\right.$ $\left.\mathrm{CH}_{3}\right)_{4} \mathrm{Cl}_{2}$] complex and compared it to the bridged $\left.\left[\mathrm{Pd}_{2}\left\{\mathrm{CN}\left(\mathrm{CH}_{2}\right) 4_{4} \mathrm{NC}\right)\right\}_{2} \mathrm{Cl}_{2}\right]$ system. ${ }^{269}$ Their DFT calculations include nonlocal exchange and correlation corrections. An excellent agreement is found between the computed geometry of $\left[\mathrm{Pd}_{2}\left(\mathrm{CNCH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ and the X-ray crystal structures of $\left[\mathrm{Pd}_{2}\left(\mathrm{CN}-\mathrm{t}-\mathrm{Bu}_{4}\right)_{4} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Pd}_{2}\left(\mathrm{CNCH}_{3}\right)_{6}\right]^{2+}$. Unfortunately the rotational barrier problem has not been addressed in this study. The same is true for the MP2 calculations of Sakaki and co-workers on $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$ and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}\right]^{2-} .{ }^{.160}$ The geometry optimization led to an almost perpendicular structure, in agreement with experiment for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}(\mathrm{CO})_{2}\right]^{2-} .{ }^{270}$ More attention has been paid in this study to the Pt-Pt binding energy in these two systems. The neutral system is bound by as much as $55 \mathrm{kcal} \mathrm{mol}^{-1}$ at the MP2 level. In contrast, the dianion is unbound due to Coulombic repulsion between the two $\left[\mathrm{PtCl}_{2}(\mathrm{CO})\right]^{-}$fragments, unless countercations are lying in the vicinity of the dimetallic unit. The effect of these countercations has been simulated by positive charges and analyzed via perturbation theory. ${ }^{160}$ Somewhat related to the bridged structure computed by Mingos as an intermediate for the fluxional process in $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{2^{-}}\right.$ $\left.\left(\mathrm{PH}_{3}\right)_{3}\right]$ is the structure of the $\left[\mathrm{Pd}_{2}(\mathrm{dppp})_{2}{ }^{2+}\right.$ cation, 7, which has been analyzed by HF and GVB calculations by van Leeuwen, Orpen, and co-workers on the $\left[\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Pd}\right]_{2}{ }^{2+}$ system. ${ }^{271}$ An extra bonding interaction

arising from overlap between the backsides of the phosphine lone pairs and "unused" Pd dxy lobes is best seen in Figure 6. Interestingly, the proposal that bridging phosphine ligands across a $\mathrm{Pt}(\mathrm{I})-\mathrm{Pt}(\mathrm{I})$ can exist had been made earlier on the basis of EH calculations on peculiar diplatinum complexes involving gold triphenylphosphine ligands. ${ }^{272}$

The structure of bridged $\left[\mathrm{Pd}_{2}(\mu-\mathrm{X})\left(\mu-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{PH}_{3}\right)_{2}\right]$ ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$), 8, has been optimized via MP2 calculations. ${ }^{273,274}$ The computed structure is in agreement with experiment. ${ }^{273,275}$ The structural features as well as the bonding in this system have been elegantly rationalized by orbital interaction arguments. In fact, this system can be considered as the prototype of a

Figure 6. Orbital plot of the metal-metal bonding HOMO of the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\right]_{2}{ }^{2+}$ system, showing the overlap between the "unused" Pd lobe (A) and the backside of the phosphine pair (B). (Reprinted with permission from ref 271.) Copyright 1992 American Chemical Society.
series of systems $\left[\mathrm{Pd}_{2}(\mu-\mathrm{X})(\mu-Y)\left(\mathrm{PR}_{3}\right)_{2}\right]$ wherethe $\left[\mathrm{Pd}_{2}-\right.$ $\left.(\mu-\mathrm{X})\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$cationic fragment is characterized by a

HOMO of σ symmetry, and a LUMO and NLUMO of π and σ symmetry, respectively, Scheme 1. ${ }^{276}$ It can

Scheme 1

therefore act as a four-electron acceptor. Thus, the structures of the $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PtBu}_{2}\right)\left(\mu, \eta^{2}: \eta^{2}-\mathrm{CS}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$ cationic complex, 9, ${ }^{277}$ and $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{SC}_{6} \mathrm{~F}_{5}\right)(\mu-\mathrm{dppm})-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right], 10$, a model of which has been calculated recently by HF calculations, ${ }^{278}$ have been rationalized along the same lines. ${ }^{276}$ Another bridged $\operatorname{Pd}(\mathrm{I})-$ $\mathrm{Pd}(\mathrm{I})$ complex, viz. $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{2}(\mathrm{CO})_{4}\right]$, has been calculated

10

at the HF and DFT (in the local spin density approximation) levels: both the planar, 11, and the hinge conformation, 12, bridged by two chlorine atoms have been considered and the bonding analyzed. However, it is difficult to discuss the relative

stabilities of these two conformations since no stable molecular structure could be obtained upon geometry optimization. ${ }^{279}$

All the above-mentioned $\mathrm{Pd}(\mathrm{I})-\mathrm{Pd}(\mathrm{I})$ complexes have a metal-metal bond distance far below $3 \AA$. Thus, the very long Pd-Pd bond distance found in the X-ray crystal structure of the $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]_{2^{2+}}$ system, in which the ($\left.\mathrm{PPh}_{3} \mathrm{Pd}-\mathrm{PdPPh}\right)_{3}$) unit is sandwiched between two s-trans-1,3 diene ligands, has called for a theoretical analysis. ${ }^{280}$ This analysis been carried out at the HF and MP2 levels. The MP2 geometry optimization reproduces the experimental structure well. The lengthening of the Pd-Pd bond has been rationalized on the basis of HOMO/LUMO interactions between the $\left[\mathrm{Pd}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2+}$ unit and the $\mathrm{C}_{4} \mathrm{H}_{6}$ units. The most noticeable feature is that the orbital involving back-donation from the d_{σ} metalmetal bonding orbital into the LUMO of $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)_{2}$ remains practically constant upon $\mathrm{Pd}-\mathrm{Pd}$ elongation.

3. $M(I I)-M(I I)$ Complexes

Many theoretical studies that have been devoted to dinuclear $\mathrm{Pd}(\mathrm{II})$ or $\mathrm{Pt}(\mathrm{II})$ complexes have focused on either analysis of the short Pt...Pt contacts in square-planar $\mathrm{Pt}(\mathrm{II}) \mathrm{d}^{8}$ entities that are facing in dimers and in chains or the hinge distortion in bridged dimers. We shall see in the following how these two aspects are in fact quite related to each other.

Scheme 2

The weakly bonding nature of the $\mathrm{d}^{8} \cdots \mathrm{~d}^{8}$ interactions has been recognized by Gray and co-workers ${ }^{281}$ and was rationalized using arguments ${ }^{282}$ similar to those used to explain $\mathrm{d}^{10} \cdots \mathrm{~d}^{10}$ interactions in bisplatinum complexes (vide supra). These arguments rely on the rehybridization of the d_{σ} orbitals by p_{σ} orbitals to minimize the $\mathrm{d}_{\sigma}-\mathrm{d}_{\sigma}$ repulsion. ${ }^{261,281,283,284}$ Another view ${ }^{285}$ is to consider the bonding as arising from combination of the four electron repulsive interactions between the d_{σ} orbitals of the two metal atoms with the two attractive donor-acceptor interactions between the d_{σ} orbital of one metal atom and the p_{σ} orbital of the other one. When these two attractive interactions are stronger than the repulsive one, then one gets net bonding. These two equivalent views are summarized in Scheme 2.

Alvarez and co-workers carried out the first ab initio calculations on dimers of $\mathrm{Pt}(\mathrm{II})$ (and $\mathrm{Rh}(\mathrm{I})$) square-planar complexes, viz. $\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2},\left[\mathrm{PtCl}_{2^{-}}\right.$ $\left.\{\mathrm{HNCH}(\mathrm{OH})\}_{2}\right]_{2}, \mathrm{H}\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2} \mathrm{Cl}, \mathrm{OC}\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2}-$ $\mathrm{AuCl},\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2} \mathrm{CO}$, and $\mathrm{OC}\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2} \mathrm{CO} .{ }^{286}$ These systems were selected as models of various known experimental complexes. A relativistic effective core potential and a relatively small basis set were used. The interaction energies were corrected from the basis set superposition error (BSSE), which was in all cases larger than the interaction energy itself, due to the small basis sets used. Thus, the agreement between the optimized MP2 Pt...Pt distances and the experimental ones results most likely from cancellation of errors. Binding energies are reported for $\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2}$ and $\left[\mathrm{PtCl}_{2}\{\mathrm{HNCH}(\mathrm{OH})\}_{2}\right]_{2}$. The staggered conformation of $\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2}$ is found to be unbound once the BSSE has been incorporated. Since the edlipsed conformation of $\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2}$ and $\left[\mathrm{PtCl}_{2}\{\mathrm{HNCH}(\mathrm{OH})\}_{2}\right]_{2}$ may be thought of as resulting from ligand-ligand interactions, pilot calculations were performed for such interactions. They seem to indicate that part of the overall binding can still be traced to metal-metal interactions. An interesting feature of this study, which has been tested by the calculations on the various adducts of $\left[\mathrm{PtCl}_{2}(\mathrm{CO})_{2}\right]_{2}$, is that the binding of Lewis acid (A) and/or bases (B) at the axial position has an increasing effect on the Pt...Pt bond length along the series $\mathrm{L}_{4} \mathrm{BM}-\mathrm{MBL}_{4}<$ $\mathrm{L}_{4} \mathrm{BM}-\mathrm{ML}_{4} \approx \mathrm{~L}_{4} \mathrm{AM}-\mathrm{MAL}_{4} \approx \mathrm{~L}_{4} \mathrm{M}-\mathrm{ML}_{4}<\mathrm{L}_{4} \mathrm{M}-$ $\mathrm{MAL}_{4}<\mathrm{L}_{4} \mathrm{BM}-\mathrm{MAL}_{4}$. Alvarez et al. have rationalized these features by elaborating further on the hybridization mechanism and its interplay with the pyramidalization of the metal. ${ }^{287}$ On the basis of EH and MP2 calculations, a correlation is found between the metal-metal distance and the pyramidality angle

a

b

Figure 7. Experimental binuclear $\mathrm{Pt}(\mathrm{II})$ triazolopyrimi-dine-bridged complex (a) and its model $\left\{\mathrm{Pt}_{2}[\mathrm{NHCHN}-\right.$ $\left.\left(\mathrm{C}\left(\mathrm{CH}_{2}\right)-\left(\mathrm{CH}_{3}\right)\right]_{4}\right\}$ (b). (Reprinted with permission from ref 288.) Copyright 1996 American Chemical Society.
at the metal, which in turn can be related to the nature of axial addition. ${ }^{210}$ It is shown that addition of a two-electron donor ligand, by decreasing the pyramidality angle, weakens the hybridization and therefore produces weaker (longer) metal…metal contacts. Addition of the Lewis acid has the opposite effect. This study has been extended to a comprehensive analysis, based on EH calculations, of the influence of the equatorial ligands. ${ }^{285} \pi$-Acceptor ligands, by lowering the p_{σ} orbital, increase its degree of mixing into the d_{σ} orbital and thus should contribute to a reinforcement of the metal - metal σ interaction. π-Donor ligands act in the opposite way and should weaken the metal - metal σ interactions. Most of the structural data have been rationalized via this model. The π metal-metal interactions have also been analyzed and provide a basis to explain the deviation from linearity in stacked complexes with mixed ligands.

A quite refined calculation, at the DFT-B3LYP level, has been done on a model of a platinum binuclear complex obtained from a cisplatin analogue. ${ }^{288}$ Figure 7 shows the experimental system and the model used for the calculation. The Gaussian-94 LANL 2DZ basis set used in this work uses the smallcore relativistic pseudopotential of Hay an Wadt ${ }^{68}$ and not the large-core one, as incorrectly stated in the article. The optimized geometry agrees with the experimental one, in particular for the Pt...Pt distance which is computed to be $2.751 \AA$ (B3LYP level, the experimental value is $2.744 \AA$). A very interesting feature of this study is use of the topol ogi cal analysis of Bader ${ }^{157,158}$ to assess the nature of the bonding between the two platinum atoms: a bond critical point is found at the middle of the Pt-Pt vector with a positive value of the Laplacian of the electronic
charge density, thus consistent with a closed-shelltype interaction. However, a negative value of the local energy density at this point indicates some covalent contribution to the interaction. This contribution must obviously arise from the hybridization pattern. The same analysis performed on the HF wave function yields a similar conclusion. All these findings are in line with the conclusions of Sakaki ${ }^{259}$ on the $d^{10 \cdots d^{10}}$ interactions in the palladium complexes (vide supra) and support (at variance with Pyykkö́258) the conclusion that such interactions are more than pure dispersion interactions.

Related to this study is the more recent investigation, using NL-DFT calculations (which also include relativistic effects) of the electronic structure of $\left[\mathrm{M}(\mathrm{dmit})_{2}\right]_{2}{ }^{\mathrm{n}}$ ($\mathrm{n}=0,-1 ; \mathrm{M}=\mathrm{Pt}, \mathrm{Pd}, \mathrm{Ni} ;$ dmit $=$ 2-thioxo-1,3-dithiole-4,5-dithiolato) units involved in stacks. 289 The bonding has been shown to arise primarily from ligand-ligand attractive interactions. These attractive interactions are supplemented, especially in the case of Pt (and to a lesser extent in the case of Pd), by metal-ligand and metal-metal interactions. The metal-metal interactions are of the same nature as the ones just discussed above. A slight bending away of the ligands relieves part of the steric repulsion (in the Pt case), as does the slipping of the two units. The delicate balance between all these factors has been assessed via an interaction energy analysis. ${ }^{289}$

Somewhat related to the $d^{8} \ldots d^{8}$ cofacial dimers are $d^{8} \cdots d^{10}$ heterobimetallic complexes where a gold or a silver cation is facing a square-planar d ${ }^{8}$ platinum complex. There has been an investigation of such complexes but at the extended Hückel level only. ${ }^{290}$ The experimental spectra and the photochemistry have been discussed on the basis of the nature of the molecular orbitals. More refined calculations would be necessary to make firmer conclusions.

The bonding and the structure of edge-sharing dimers of square-planar complexes were first addressed by Alvarez and co-workers. They analyzed via EH calculations the bonding in the planar $\mathrm{d}^{8}-\mathrm{d}^{8}$ $\left[\mathrm{Pt}_{2} \mathrm{~L}_{4}\left(\mu-\mathrm{XR}_{\mathrm{n}}\right)\right]$ systems. ${ }^{291}$ The generalized orbital interaction diagram of Figure 8 shows how the socalled framework molecular orbitals are formed from the σ and π valence orbitals on both the metals and the bridging groups. For d^{8} metals such as platinum or palladium, one has eight valence electrons that give rise to four doubly occupied orbitals, thus accounting for the four metal-to-bridging ligands bonds. Lledós has used these orbitals to rationalize via both EH and ab initio cal culations the hinge distortion in platinum(II) dimers with a $\mathrm{Pt}_{2} \mathrm{X}_{2}$ ring ($\mathrm{X}=\mathrm{S}, \mathrm{SR}$). ${ }^{292}$ The argument is based on the allowed mixing, upon folding of the $\mathrm{Pt}_{2} \mathrm{X}_{2}$ ring, of some of these orbitals with orbitals of d_{δ} type. It is rather weak, however, and some counter examples have been found. 293,294 For instance, the structure of the $\left[\mathrm{Pt}_{2} \mathrm{Se}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ complex was found to be planar both in the X-ray crystal structure and via a geometry optimization carried out at the HF level (but not at the MP2 level). ${ }^{293}$ In fact, it was recognized later in a joint study that this hinge distortion could be analyzed like the $d^{8} \cdots d^{8}$ interactions in stacked platinum dimers. ${ }^{294}$

Figure 8. Schematic orbital interaction diagram between two $M L_{n}$ fragments (left) and two $X R_{m}$ bridges (right) to form a $\left[\mathrm{M}_{2} \mathrm{~L}_{2 \mathrm{n}}\left(\mu-\mathrm{XR}_{\mathrm{m}}\right)_{2}\right.$] complex. The orbitals are labeled according to their representation in the $D_{2 h}$ group. Only the in-plane framework orbitals are considered; the nonbonding d orbitals are omitted. (Reprinted with permission from ref 291.) Copyright 1994.

The only difference is that the two d_{σ} orbitals (as the two p_{σ} orbitals) now make an angle smaller than 180°, see 13. Thus, Lledós, Alvarez, and co-workers

were able to provide a rationale for many experimental structures on the basis of the attractive metal $\cdot \cdot$ metal interactions shown in Scheme 2, eventually modulated by various ligand effects of electronic and steric nature, and with the aid of MP2 geometry optimizations. ${ }^{294,295}$ Quite noteworthy, their view of the bonding is supported by a topological charge density analysis that was carried out on a bent dirhodium(I) complex: there, as in the cisplatin anal ogue dimer that we mentioned previously, a bond critical point between the two metal atoms characteristic of a direct coupling is found. ${ }^{296}$
There have been a few other calculations dealing with M (II) -M (II) complexes of palladium and platinum. The bonding in a diplatinum system resulting from the dimerization, upon one electron-one proton
el ectroprotic transformation, of two Pt(II) bis-chelate radicals has been unravelled. It corresponds to the coupling of the two unpaired electrons of the chelate rings and to some $\mathrm{d}_{z^{2}}-\mathrm{d}_{z^{2}}$ interaction. ${ }^{297} \mathrm{M}$ arks et al. have carried out ab initio calculations (at the HF level) on cofacial dimers of palladium bis(glyoximates) to rationalize the temperature-dependent conductivity of Iow-dimensional, partially oxidized material $\mathrm{Pd}(\mathrm{dpg})_{2}{ }^{0.20+}\left(\mathrm{I}_{5}\right)_{0.20}$ (dpg = diphenylglyoximato). ${ }^{298}$ DFT-B3LYP calculations on the bipyrimi-dine-bridged bis-Pt(II) system [Me2Pt(bpym)PtMe ${ }_{2}$] have shown that the LUMO is essentially a bipyrimidine π^{*} orbital, thus accounting for the radical anion character of the one-el ectron-reduced species. ${ }^{299}$ There is no significant interaction of the metal fragments across the π-conjugated bipyrimidine ligand. The study has been extended to the Pt(IV)-Pt(IV) [$\mathrm{Me}_{4} \mathrm{Pt}(\mathrm{bpym}) \mathrm{PtM} \mathrm{e}_{4}$] complex, whose DFT structure is in good agreement with the experimental X-ray crystal structure. ${ }^{299}$ The single metal-metal bond in $\mathrm{L}_{4} \mathrm{M}-\mathrm{M}^{\prime} \mathrm{L}_{3}$ dimers of d^{8} metal ions, with the structural motif shown in 14, has been rationalized via molecular orbital interactions based on extended Hückel calculations. ${ }^{284,300,301}$ In one case, corresponding to the systems of the type $\mathrm{L}_{4} \mathrm{Pt}-\mathrm{PdL}{ }_{2} \mathrm{Y}$ (Y being a trans halogen substituent), an inverse halogen dependence of the ${ }^{195} \mathrm{Pt}$ chemical shift vs orbital energy differences has been found and is indicative of the transmission of electronic effects via the metal - metal bond. ${ }^{301}$ The single bond in $\mathrm{L}_{4} \mathrm{Pt}-\mathrm{M}^{\prime} \mathrm{L}_{2}$ $d^{8}-d^{10}$ dimers with the structural motif shown in 15 also has been analyzed via EH calculations. ${ }^{284}$ The bonding characteristics in the phosphido-bridged $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)_{2}(\mathrm{H})\left(\mathrm{PH}^{\mathrm{t}} \mathrm{Bu}_{2}\right)\right]^{+}$system (where H is a terminal hydrido ligand) and in the phosphine bridged $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{2}\right)_{2}\left(\mu-\mathrm{PtH}{ }^{\mathrm{tB}} \mathrm{Bu}_{2}\right)\left(\mathrm{PH}^{\mathrm{t} B u_{2}}\right)_{2}\right]^{+}$system have been compared via HF and DFT calculations. ${ }^{302}$ The Bader population analysis clearly shows three center $\mathrm{Pd} \cdots \mathrm{H}-\mathrm{P}$ interactions in the latter case.

4. $M(I I I)-M(I I I)$ and $M(I I)-M(I V)$ Complexes

There is a wide variety of dinuclear $\operatorname{Pt}(I I I)-\operatorname{Pt}(I I I)$ dinuclear complexes with bridging ligands across the single metal-metal bond, e.g., sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, hydrogen phosphates $\left(\mathrm{HPO}_{4}{ }^{2-}\right)$, pyrophosphites $\left(\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{5}{ }^{2-}\right)$, or acetates $\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right) .{ }^{303}$ In the latter case the bonding has been analyzed via quasirelativistic$X \alpha$ calculations on the analogous tetraformate complex $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CH}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+} .304$ The computed molecular orbital sequence does indeed correspond to a metal-metal single bond with the σ^{*} orbital being the lowest unoccupied orbital. As expected, the quasirelativistic corrections stabilize the orbitals with significant 6 s character and raise those with significant 5d character, thus further strengthening the metal-metal σ bond via increased mixing of 6 s and $5 d$. These results have been used to interpret the
observed electronic spectrum of the corresponding tetraacetate complex. ${ }^{304}$

The first dinuclear complex of palladium(III) was recently isolated, owing to the use of the dinitrogendonor ligand hpp (the anion of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine) and its X-ray crystal structure solved. ${ }^{305}$ The $\left[\mathrm{Pd}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}\right]$ system has a very short Pd-Pd bond of 2.391 Å. A HF geometry optimization (with an all-electron valence double ζ basis set supplemented by polarization functions on all atoms) led to an optimized bond length of 2.402 \AA A. Not surprisingly the metal-metal interaction corresponds to a $\sigma^{2} \pi^{4} \delta^{2} \delta^{* 2} \pi^{* 4}$ configuration. ${ }^{305}$

The system $\left[\left(\mathrm{H}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PH}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{SCH}_{3}\right)_{2} \mathrm{PtI} \mathrm{Me}_{3}\right]$ has been computed as a model of the experimental complex $\left[\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) \mathrm{Pt}\left\{\mu-\mathrm{SCH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2-}\right.\right.$ $\mathrm{NMe}\}_{2} \mathrm{PtlMe} \mathrm{e}_{3}$, whose X-ray crystal structure is characterized by the folded nature of the central $\mathrm{Pt}^{\text {II }}(\mu-\mathrm{S})_{2} \mathrm{Pt}^{\text {IV }}$ ring, the anti conformation of the alkyl chains of the thiolate ligands, and the position of the iodine atom in the inner region of the hinged $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ ring. ${ }^{306}$ The cal culations were carried out at the DFTB3LYP level with a small-core relativistic pseudopotential. ${ }^{68}$ Various isomers have been considered, the most stable one computed to be the anti(I-endo), in agreement with the experimental structure. This has been ascribed to some attractive interaction between iodine and the unsaturated $\mathrm{Pt}(\mathrm{II})$ center: Note, however, that the calculations seem to overemphasize this interaction: the computed Pt...| distance amounts to $3.38 \AA$, whereas it is $3.86 \AA$ in the experimental structure. This is due to a greater folding of the $\mathrm{Pt}_{2} \mathrm{~S}_{2}$ core and to a larger $\mathrm{Pt}-\mathrm{I}$ bond in the calculations. The transition states for the interconversion between the most stable isomers have been determined and discussed in connection with the NMR data. ${ }^{306}$

C. Tri and Polynuclear Molecular Complexes

Many studies have been devoted to the $\left[\mathrm{M}_{3}\left(\mu_{3}-\mathrm{CO}\right)\right.$ (dppm) $\left.)_{3}\right]^{2+}$ systems ($\mathrm{M}=\mathrm{Pd} ;{ }^{307} \mathrm{M}=\mathrm{Pt}^{308}$) and their various adducts or derivatives. The interest for such systems stems from the fact that they can be considered for their chemical properties as mimicking either a Pt_{3} or Pd_{3} unit on a platinum or palladium surface. Moreover, they display a very interesting stoichiometric and catalytic activity. ${ }^{309} \mathrm{Most}$ of the theoretical studies, essentially of extended Hückel type, arise from the Puddephatt group and from the Harvey group and are intimately linked to the experimental aspects. Puddephatt has rationalized the structures of the $\left[\mathrm{Pt}_{3}\left(\mu_{3}-\mathrm{H}\right) \mathrm{L}(\mathrm{dppm})_{3}\right]^{+}$and $\left[\mathrm{Pt}_{3}{ }^{-}\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right) \mathrm{L}(\mathrm{dppm})_{3}\right]^{2+}$ systems, in particular the fact that the capping ligand is asymmetrically bound. ${ }^{310}$ The factors that contribute to the terminal mode of binding for the two isocyanide ligands on a single platinum atom of $\left[\mathrm{Pt}_{3}(\mathrm{CNR})_{2}(\mathrm{dppm})_{3}\right]^{2+}$ have been delineated. ${ }^{311}$ The interactions of either $\left[\mathrm{Re}(\mathrm{CO})_{3}\right]^{+}$ or $\left[\mathrm{ReO}_{3}\right]^{+}$with the $\left[\mathrm{Pt}_{3}(\mathrm{dppm})_{3}\right]$ fragment have been compared in the framework of a study aimed at characterizing models for oxide interactions in bimetallic catalysts. ${ }^{312}$

Harvey and co-workers have paid more attention to the tripalladium complex (although in some in-
stances the triplatinum complex was considered as well) and have focused on the photophysical and electrochemical properties. They first correlated the electronic spectra of $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{dppm})_{3}\right]^{2+}$ and $\left[\mathrm{Pt}_{3}-\right.$ $\left.\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{dppm})_{3}\right]^{2+}$ to the orbital sequence obtained from an extended Hückel calculation. ${ }^{313}$ M ore refined calculations of DFT type, made in collaboration with Ziegler, have led to a firmer assignment of the spectra. The nature of the lowest electronic states ${ }^{3} \mathrm{~A}_{2}$ (which corresponds to a $\sigma \rightarrow \sigma^{*}$ transition) and ${ }^{1} \mathrm{E}$ has been assessed. The authors have used these results, in particular the expected $\mathrm{Pd} \cdot \cdots$ Pd lengthening upon excitation, to elaborate further on the hostguest chemistry of these systems in the excited states. ${ }^{314}$ Subsequent optimizations (again at the DFT level) of the $\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right)\right]^{2+}$ system for the ground state ${ }^{1} \mathrm{~A}_{1}$ and for the excited states ${ }^{3} \mathrm{~A}_{2}$ and ${ }^{3} \mathrm{E}$ showed indeed a lengthening of $0.186 \AA$ in the ${ }^{3} \mathrm{~A}_{2}$ state (and of $0.289 \AA$ in the ${ }^{3} E$ state). This has been confirmed by an analysis of the emission band. ${ }^{269}$ In relation with this host-guest chemistry, Harvey et al. have also considered the mixed-metal trinuclear system $\left[\mathrm{Pd}_{2} \mathrm{Co}\left(\mu_{3}-\mathrm{CO}\right)_{2}(\mathrm{dppm})_{2}(\mathrm{CO})_{2}\right]^{2+}$. They have computed at the DFT level the molecular orbital sequence and used this sequence to predict the nature of the lowest transitions of the UV spectra of related complexes. ${ }^{315}$ The same group has finally investigated the photoinduced oxidative degradation of the $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{dppm})_{3}\right]^{2+}$ cluster by chlorocarbons and by the chloride ion, ${ }^{316}$ as well as its electrochemical reduction. ${ }^{317}$ Since many of the arguments were of geometrical type, the geometries of the adducts $\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right) \cdots \mathrm{Cl}\right]^{+},\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right)\left(\mu_{3}-\mathrm{CO}\right) \cdot \cdot\right.$ - $\left.\mathrm{Cl}-\mathrm{CH}_{3}\right]^{2+}$, of the oxidized form $\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right)\right]^{3+}$, and of the reduced forms $\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right)\right]^{+}$and $\left[\mathrm{Pd}_{3}\left(\mathrm{PH}_{3}\right)_{6}\left(\mu_{3}-\mathrm{CO}\right)\right]$ have been determined at the DFT level (including nonlocal exchange correlation corrections). ${ }^{316,317}$

Some other studies have dealt with clusters that can be considered as or are related to building blocks of Chini's clusters. Such clusters consist of triangular $\left[M_{3}(C O)_{6}\right]_{n}{ }^{2-}$ units ($n \geq 1 ; M=N i, P t$) stacked along the 3 -fold axis of symmetry. ${ }^{318}$ In conjunction with an experimental study of the liquid structure of $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{6}\right]_{2^{2-}}$ which shows that this system adopts, as in the solid state, an eclipsed conformation of the two $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{6}\right]^{2-}$ triangular units (in contrast to the Ni anal ogue where the liquid and the sol id structures have a different arrangement), both the eclipsed ($\mathrm{D}_{3 \mathrm{~h}}$) and staggered ($\mathrm{D}_{3 \mathrm{~d}}$) conformations have been calculated. ${ }^{319}$ The calculations were carried out within the DFT formalism, with and without nonlocal corrections. The structural parameters obtained from the B3LYP calculations are in good agreement with experiment. At this level of theory the energy difference between the two conformations $D_{3 h}$ and $D_{3 d}$ is only $0.1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. In fact, these two conformations turn out to be transition states and the true minimum that corresponds to a twisting angle of about 30° lies $1 \mathrm{kcal} \mathrm{mol}^{-1}$ lower. The reduced radial distribution functions corresponding to the atomatom distance obtained from the calculations and from experiment match quite well. The monocluster $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{6}\right]^{2-}$ could be isolated and characterized by

IR, NMR, and liquid X-ray scattering. The B3LYP computed structure is again in agreement with experiment. ${ }^{319}$ The $\left[\mathrm{Pt}_{3}(\mathrm{CO})_{6}\right]$ neutral system has al so been recently investigated at the NL-DFT level. ${ }^{320} \mathrm{As}$ in many previous studies, ${ }^{321}$ the ground state corresponds to the $\left(a^{\prime}\right)^{2}\left(a^{\prime}\right)^{0}$ configuration. The vibrational spectrum has been computed and discussed in connection with CO chemisorption on platinum surfaces. ${ }^{320}$ In the context of Chini's clusters, one should also mention hexaplatinum complexes involving $\left[\mathrm{Pt}_{6}{ }^{-}\right.$ $\left.\left(\mu_{2}-\mathrm{CO}\right)_{6}\left(\mu_{2}-\mathrm{dppm}\right)_{3}\right]$ as elementary unit, where the three dppm ligands hold together two triangular units. The study by the Puddephatt group includes some extended Hückel calculations. ${ }^{322,323}$ Yamamoto and Yamazaki have analyzed, through extended Hückel calculations, the mixed cluster $\left[\mathrm{HgPt}_{6}(2,6-\right.$ $\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{12}$] in which Hg is sandwiched between two $\left[\mathrm{Pt}_{3}\left\{\mu_{3}-\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)\right\}_{3}\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{3}\right]$ units. ${ }^{324}$
The bonding in mixed linear trinuclear mercury platinum clusters of general formula [\{Pt(diphosphine)(isocyanide) $\left.\}_{2} \mathrm{Hg}\right]^{2+}, \mathbf{1 6}$, has also been analyzed via extended Hückel calculations. ${ }^{325}$ Note that these

clusters were originally, but erroneously, formulated as $\left\{\left\{\mathrm{Pt}(\text { di iphosphine) (isocyanide) }\}_{2} \mathrm{Pt}\right]^{2+}\right.$ and analyzed as such. ${ }^{326}$ Related to these systems are systems in which Hg is substituted by a linear or a bent $\mathrm{d}^{10} \mathrm{ML}_{2}$ unit (in this case the metal-metal bonds are supported by triphosphine ligands acting either in a bidentate or tridentate way). ${ }^{327}$ Thus, a comparison of the orbital interaction diagrams of the [\{Pt$\left.\left.\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{CNH})\right\}_{2} \mathrm{Hg}\right]^{2+}$ and $\left[\mathrm{Pt}_{3}\left(\mathrm{PH}_{3}\right)_{6}(\mathrm{CNH})_{2}\right]^{2+}$ model systems clearly shows the similarity in the respective bonding patterns, a doubly occupied $d_{x^{2}-y^{2}}$ orbital on PtL_{2} playing the role of the 6 s orbital of $\mathrm{Hg} .{ }^{327}$ Interestingly, the $\left[\mathrm{Pd}_{4}(\mathrm{dmb})_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]_{\mathrm{Cl}}^{2}$ system (dmb $=1,8$-diisocyano-p-menthane) and its polymers have been recently synthesized and analyzed via extended Hückel calculations by Harvey and co-workers. ${ }^{328}$ These $\left[L_{3} M-M L_{2}-M L_{2}-M L_{3}\right]^{2+}$ type systems ($M=$ Pt) can be seen as the next members of a series starting with the $\left[L_{3} M-M L_{2}-M L_{3}\right]^{2+}$ systems that we just mentioned. In the tetranuclear complexes, the bonding arises from a two-electron bonding interaction between dp hybrids localized on the ML_{2} end of each $\left[\mathrm{L}_{3} \mathrm{M}-\mathrm{ML}_{2}\right]^{+}$moiety. ${ }^{328}$
Quasirelativistic $\mathrm{X} \alpha$ calculations have been performed on $\mathrm{Pd}_{6} \mathrm{Cl}_{12}$ and the molecular orbital sequence obtained from these calculations discussed by comparison to the sequences obtained for PdCl_{2} and $\mathrm{PdCl}_{4}{ }^{2-} .329$ This system makes aggregates with a variety of π systems, from benzene to fullerene C_{60}. The composition of the orbitals, especially the empty ones, has been used as an indicator to suggest that
the π system can act as a donor in a charge-transfer state.

IV. Reactivity Studies

There have been a few reviews or books dealing with the theoretical aspects of organometallic reactivity al ready. ${ }^{14,16,330-332}$ In the following we will focus on reactions involving more specifically palladium or platinum.

1. Oxidative Addition and Reductive Elimination

Reactions Involving One Metal Center. As said in the Introduction, this class of reaction was investigated from a theoretical point of view quite early, especially for $\mathrm{H}-\mathrm{H}, \mathrm{C}-\mathrm{H}$, or even $\mathrm{C}-\mathrm{C}$ bonds with either naked metal atoms or with the $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}$ fragment ($\mathrm{M}=\mathrm{Pd}, \mathrm{Pt}$). ${ }^{55,333-338}$ Thus, a coherent picture has emerged. It emphasizes the covalent nature of the $\mathrm{M}-\mathrm{H}$ or $\mathrm{M}-\mathrm{C}$ bond in the oxidative addition product and the competition between the $d^{9} s^{1}$ and d^{10} states of the metal atom, at least when the $\mathrm{M}^{0} / \mathrm{M}^{11}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ pair of formal oxidation states is invol ved. In particular, the formation of the two $\mathrm{M}-\mathrm{H}$ or $\mathrm{M}-\mathrm{C}$ bonds requires the promotion of the metal to the $d^{9} s^{1}$ state. The more accessible this state, the more exothermic or the less endothermic the oxidative addition and the lowest the corresponding energy barrier are. This is why oxidative additions are generally easier with Pt than Pd systems. Conversely, the reductive elimination process is easier for Pd than for Pt. As far as the geometries are concerned the reactions

$$
\mathrm{H}_{2}+\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{Pt}(\mathrm{H})_{2}\left(\mathrm{PH}_{3}\right)_{2}
$$

and

$$
\mathrm{Pt}(\mathrm{H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{CH}_{4}
$$

were the first organometallic reactions for which transition states were determined through a gradient geometry optimization. ${ }^{333,335}$ One distinctive feature was the presence of an early transition state for the oxidative addition of H_{2}. The theoretical investigations that were carried out before 1990 have been reviewed. 331,339

The subsequent studies have aimed at (i) a more precise determination of the kinetic and thermodynamic parameters, (ii) a comprehensive assessment of all parameters involved in the reaction, including the steric ones when bulky ligands are present, (iii) a comparison of the reactions on Pd and Pt with reactions on other metals, (iv) an extension to the oxidative addition of bonds other than $\mathrm{H}-\mathrm{H}$, $\mathrm{C}-\mathrm{H}$, or $\mathrm{C}-\mathrm{C}$, and (v) a step toward the heterogeneous regime by looking at reactions on Pd and Pt clusters and surfaces.

Hay has compared, on the $\mathrm{H}_{2}+\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2} \rightarrow \mathrm{Pt}(\mathrm{H})_{2^{-}}$ $\left(\mathrm{PH}_{3}\right)_{2}$ reaction, the performance of his two sets of pseudopotentials, 68,124 the large-core ones which were used in earlier investigations and the small-core ones which have been used in this study. ${ }^{340}$ In addition to the explicit treatment of the $5 s$ and $5 p$ electrons, the small core pseudopotentials are norm conserving, i.e.,
they preserve the valence electron density about Pt. Since the large-core pseudopotentials overestimate the bond energies, the exothermicities that were obtained from the previous studies are too high. The small-core pseudopotential have been used by Morokuma and co-workers in their benchmark study of the $\mathrm{H}_{2}+\mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2} \rightarrow \mathrm{Pt}(\mathrm{H})_{2}\left(\mathrm{PR}_{3}\right)_{2}$ reaction $(\mathrm{R}=\mathrm{H}$, $\mathrm{Me},{ }^{\mathrm{t}} \mathrm{Bu}$, and Ph) with their newly developed "integrated $\mathrm{MO}+\mathrm{MM}$ " method. ${ }^{79}$ At the highest level of geometry optimization, the calculations for the MO part of the system were of MP2 type with a valence double ζ basis set, polarized for the ligands. We shall not discuss here the performance of this approach, which is the subject of another article of the present thematic issue. From a chemical point of view, some points are worth mentioning: The energy barrier is low and similar for $\mathrm{H}\left(3.8 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$, $\mathrm{Me}(3.9 \mathrm{kcal}$ mol^{-1}), and $\mathrm{Ph}\left(1.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ and as expected much higher for ${ }^{\text {t }} \mathrm{Bu}\left(14.5 \mathrm{kcal} \mathrm{mol}^{-1}\right.$). In this latter case the steric effects lead to a twist of H_{2} in the transition state, the $\mathrm{H}-\mathrm{H}-\mathrm{Pt}-\mathrm{P}$ angle being 32.2°. The lower barrier for $\mathrm{R}=\mathrm{Ph}$ is due to some inter-phenyl attractive interactions. This is best seen from a decomposition analysis of the energy into a MO and a MM part. The product is found to be predominantly cis for $R=H, M e$, and $P h$ and trans for $R={ }^{t} B u$, again as a result of the steric effects. Finally the value of $20.4 \mathrm{kcal} \mathrm{mol}^{-1}$ computed for the barrier of the reverse reaction, i.e., the reductive elimination of H_{2} from $\left[(\mathrm{H})_{2} \mathrm{Pt}\left(\mathrm{PMe}_{3}\right)_{2}\right]$, is in excellent agreement with the experimental value in a noncoordinating solvent, ${ }^{341} 20.0 \pm 0.5 \mathrm{kcal} \mathrm{mol}^{-1}$.

A detailed examination of the articles written by Siegbahn, Blomberg, and co-workers about their comprehensive investigation of the $\mathrm{C}-\mathrm{H}$ bond oxidative addition ${ }^{342-345}$ to the second-row transition metals allows one to compare this process for $\mathrm{C}-\mathrm{H}$ bonds invol ving either $s p^{3}, \mathrm{sp}^{2}$, or sp carbon atoms. The first studies have been performed for the oxidative addition of $\mathrm{CH}_{4},{ }^{346-348}$ with basis sets and methods being improved over the years. We shall therefore discuss only the results of their latest calculations, ${ }^{348}$ together with those of the studies on the oxidative addition of $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{348}$ and of $\mathrm{C}_{2} \mathrm{H}_{2}{ }^{170}$ for which they used the same methodology. The geometries were optimized at the SCF level with a small-core relativistic pseudopotential ${ }^{68}$ and valence double- ζ basis sets. For the energy determination, larger basis set were employed (with polarization functions on all atoms including palladium) either at the MCPF level or at the CCSD(T) level, starting from the SCF wave function as a zeroth order wave function. In the CCSD(T) calculations which served as benchmark calculations for the entire row, the basis sets were especially large and several polarization functions on each atom were added. The main energetic results with some geometric features are summarized in Table 5. More details about the optimized geometries of the molecular precursors, transition states, and products may be found in the original publications.

As seen from Table 5, the optimized geometries are quite similar for the three reactions. It has been argued that the SCF level is sufficient for geometry optimization, since in the most interesting regions

Table 5. Comparative CCSD(T) and MCPF Results for the $\mathbf{C}-\mathrm{H}$ Bond and $\mathbf{C}-\mathrm{C}$ Bond Oxidative Addition to Palladium

	$\mathrm{Pd}+\mathrm{CH}_{4}$	$\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{6}{ }^{\mathrm{e}}$
		M olecular Complex		
$\Delta E\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{\text {a }}$	(-4c)	-30.7 (-26.7)	-28.3 (-27.2)	
$\mathrm{M}-\mathrm{C}(\AA)^{\text {b }}$	$2.5{ }^{\text {c }}$	2.13		
		Transition State		
$\Delta \mathrm{E}^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{\mathrm{b}, \mathrm{d}}$	10.6 (15.0)	0.3 (4.7)	-4.1 (-1.1)	23.1 (31.8)
M-C $(\AA)^{\text {b }}$	2.10	2.01	1.97	2.17
$\mathrm{M}-\mathrm{H}(\mathrm{A})^{\text {b }}$	1.54	1.53	1.53	
$\angle \mathrm{C}-\mathrm{M}-\mathrm{H}^{\mathrm{b}}$	57.1°	61.8°	57.7°	
$\angle \mathrm{C}-\mathrm{M}-\mathrm{C}^{\text {b }}$				$58.3{ }^{\circ}$
		Products		
$\Delta \mathrm{E}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)^{\mathrm{b}, \mathrm{d}}$	5.6 (9.3)	-2.2 (1.5)	-5.4 (-3.6)	$-0.2(+7.2)$
$\mathrm{M}-\mathrm{C}(\AA)^{\text {b }}$	2.03	1.98	1.95	2.03
$\mathrm{M}-\mathrm{H}(\mathrm{A})^{\text {b }}$	1.53	1.54	1.50	
$\angle \mathrm{C}-\mathrm{M}-\mathrm{H}^{\mathrm{b}}$	82.7°	$80.5{ }^{\circ}$	79.2°	
$\angle C-M-C^{b}$				$89.9{ }^{\circ}$
$\Delta \mathrm{E}_{\text {elim }}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	5.0 (5.7)	2.5 (3.2)		

a CCSD(T) values, the MCPF values are in parentheses; no ZPE correction is included; negative values correspond to exothermic reactions. ${ }^{\text {b }}$ SCF optimized geometries; thus, a negative energy barrier corresponds to a barrierless reaction at the CCSD(T) and/ or MCPF level. ${ }^{c}$ With an assumed geometry taken from the corresponding rhodium system. ${ }^{\text {d }}$ Computed to the separated substrate and $\mathrm{Pd}\left({ }^{1} \mathrm{~S}\right) .{ }^{\mathrm{e}} \mathrm{C}-\mathrm{C}$ bond oxidative addition.
of the potential energy surface (including the transition state and the product) the SCF and MCPF surfaces are quite parallel. M oreover, due to the flat character of the surfaces in these regions, discrepancies between SCF- and MCPF-optimized geometries should have very small effects. Although one can agree on these arguments, it is nevertheless somewhat puzzling that in every case the transitionstate geometry is product-like, also in the case of the exothermic reactions $\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{2}$. Note that these reactions are exothermic only at the CCSD(T) level. It is therefore likely that the productlike geometry is a consequence of the endothermic nature of all reactions at the SCF level, which is the level of optimization. Siegbahn and Svensson have carried out a systematic investigation of the geometry optimization step for second-row transition metals, comparing the SCF, MP2, and QCISD levels, but essentially for stable structures. ${ }^{349}$ A transition state was considered only in one case, for the reaction Pd $+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Pd}(\mathrm{H})(\mathrm{OH})$. However, this reaction is exothermic at both the SCF and QCISD levels. It is therefore not surprising that in this case a minimal variation for the transition state is found. Calculations carried out later by Sakaki et al. for the oxidative addition of the $\mathrm{Si}-\mathrm{H}$ and the $\mathrm{Si}-\mathrm{Si}$ bonds on $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ showed Iarge differences between the MP2- and SCF-optimized values. ${ }^{350}$ But, as pointed out by one referee, the "softer" character of the Si systems compared to the C system should lead to stronger geometric responses to changes in the reaction energy. Indeed, the relative energies computed from the SCF and MP2 geometries differ by less than $2.0 \mathrm{kcal} \mathrm{mol}^{-1}$. This justifies the original assumption of Siegbahn et al., at least for model systems that do not involve bulky substituents where the difference in the structure might have more influence on the energies.
As far the energies are concerned, the endothermicity (for the $\mathrm{Pd}+\mathrm{CH}_{4}$ reaction) or the quite low exothermicity (for the $\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{2}$ reactions) has been ascribed (as in Goddard's work)
to the d^{10} nature of the ground state of the palladium atom and to the relatively high $\mathrm{d}^{10}-\mathrm{d}^{9} \mathrm{~s}^{1}$ splitting. On the other hand, that there are no electrons in the 5s orbital leads to a minimal repulsion with the incoming substrate and explains why the energy barriers are relatively moderate for CH_{4} or very low for $\mathrm{C}_{2} \mathrm{H}_{4}$ (there is no barrier for $\mathrm{C}_{2} \mathrm{H}_{2}$). The general trend that the energy barrier decreases on going from CH_{4}, to $\mathrm{C}_{2} \mathrm{H}_{4}$, to $\mathrm{C}_{2} \mathrm{H}_{2}$ (and that the stability of the product increases) is traced to a steric effect: the sideways orientation necessary for an efficient interaction between the metal and the $\mathrm{C}-\mathrm{H}$ bond is more easily reached by ethylene and acetylene than by methane. ${ }^{170,348}$ Hybridization effects (which relate the strength of a $\mathrm{C}-\mathrm{H}$ bond to the degree of 2 s mixing in that bond) were put forth in these studies but were discarded later. ${ }^{130}$ Note here that an alternate explanation based on spin uncoupling inside the ethylene was provided very recently by Minaev and Agren. ${ }^{137}$ Specifically, upon displacement along the asymmetric $\mathrm{Pd}-\mathrm{C}$ vibration mode, there is a strong spin uncoupling induced by the low-lying ${ }^{3} D\left(d^{9} s^{1}\right)$ state of Pd . The ${ }^{3}\left(\pi \pi^{*}\right)$ excited triplet state of ethylene can mix into the ${ }^{3}\left(\sigma \sigma^{*}\right)$ excited triplet state, which at the transition state is localized on the $\mathrm{C}-\mathrm{H}$ bond. For methane there is no involvement of a ${ }^{3}\left(\pi \pi^{*}\right)$ triplet state and thus no possibility of mixing with the ${ }^{3}\left(\sigma \sigma^{*}\right)$ state. This leads to a higher activation barrier. Either these arguments or the steric argument provide a rationalization of the fact that stronger $\mathrm{C}-\mathrm{H}$ bonds ($\mathrm{C}(\mathrm{sp})-\mathrm{H}>\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}>\mathrm{C}\left(\mathrm{sp}^{3}\right)-$ H) are also more easily activated. According to Siegbahn, the difficulty to observe $\mathrm{C}-\mathrm{H}$ bond oxidative addition reactions of either alkenes or alkynes can be explained instead by the strong stability of the $\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}_{4}$ or $\mathrm{Pd}-\mathrm{C}_{2} \mathrm{H}_{2}$ molecular precursor complexes. These molecular complexes act as thermodynamic sinks. A similar feature is also found at the NL-DFT level by Fahmi and van Santen: in their calculations the molecular complex is bound by 39 kcal mol^{-1}, the reaction $\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{Pd}(\mathrm{H})\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$ is exothermic by $6 \mathrm{kcal} \mathrm{mol}^{-1}$ with a transition state 3
$\mathrm{kcal} \mathrm{mol}^{-1}$ below the separated reactants. The good agreement with the benchmark values of Siegbahn and co-workers ${ }^{348}$ has been taken as an argument to use the DFT method to study the $\mathrm{C}-\mathrm{H}$ activation on the palladium dimer. ${ }^{136}$
Table 5 also shows the results that were obtained by Siegbahn and Blomberg for the $\mathrm{C}-\mathrm{C}$ bond oxidative addition of ethane to $\mathrm{Pd} .{ }^{351}$ As expected from previous work, ${ }^{55}$ the energy barrier is much higher than that for the $\mathrm{C}-\mathrm{H}$ bond oxidative addition, because two CH_{3} groups (instead of one) have to undergo a costly tilting in order to orient themselves favorably. Blomberg and Siegbahn noticed, however, that among the second-row metal atoms, palladium is the one which has the lowest barrier for breaking the $\mathrm{C}-\mathrm{C}$ bond, since it is the only one to have an s^{0} ground-state configuration. The presence of such an s^{0} state is more important for the $\mathrm{C}-\mathrm{C}$ bond than for the $\mathrm{C}-\mathrm{H}$ bond oxidative addition, because the repulsion of the metal will involve the nonbonding electrons of two methyl groups. The reaction is al most thermoneutral. Interestingly, the two methyl groups in the $\mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}$ product make an angle of 90°, i.e., the ideal angle for a d ${ }^{9} \mathrm{~s}^{1}$ hybridization. An additional interesting feature of the study is the comparison of the oxidative additions of the $\mathrm{C}-\mathrm{C}$ bond in ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, cyclopropane $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$, and cyclobutane ($\mathrm{C}_{4} \mathrm{H}_{8}$). The corresponding barriers at the MCPF level are $23.1,-10.6$, (i.e., barrierless), and $6.9 \mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$, the reaction energies being, respectively, $-0.2,-22.4$, and $-19.6 \mathrm{kcal} \mathrm{mol}^{-1}$. It has been argued that the oxidative addition of cyclopropane proceeds without energy barrier because of the strong strain of the metal-carbon bonds in the metallacyclobutane adduct (the $\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle amounts to 69.5°). ${ }^{351} \mathrm{Al}-$ though one can easily understand that the strain in the cyclopropane reactant should lead to low barriers, it is difficult to see how the strain in the metallacyclobutane product can induce a low barrier. One would follow such arguments more easily when considering the barrier for the reverse process, the reductive elimination: in this case the greater strain of the metal-carbon bonds in metallacyclobutane ($\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle $=69.5^{\circ}$) compared to metallacyclopentane ($\mathrm{C}-\mathrm{M}-\mathrm{C}$ angle $=85.3^{\circ}$) readily accounts for a lower barrier in the former case ($11.8 \mathrm{kcal} \mathrm{mol}^{-1}$ compared to $26.5 \mathrm{kcal} \mathrm{mol}^{-1}$).

According to Siegbahn, Blomberg, and co-workers, the accuracy of these $\operatorname{CCSD}(\mathrm{T})$ calculations is about $\pm 5 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$. In studies carried out in conjunction with gas-phase kinetic measurements, further refinements were brought to these values by adding the zero-point vibrational energies to all stationary points and using the so-called $\mathrm{PCI}-80$ computational scheme. ${ }^{107,109}$ In this scheme ${ }^{113}$ the correlation effects are scaled, assuming that the MCPF technique recovers 80% of these effects at the stationary points. Some of the results of the corresponding cal culations are summarized in Table 6. The comparison with Table 5 shows that using the PCI-80 scheme and incorporating the zero-point energy effects increase the binding energies and lower the energy barriers quite uniformly, by about $5 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the $\operatorname{CCSD}(\mathrm{T})$ values and somewhat more ($\sim 10-$

Table 6. PCI-80 Energy Results for the $\mathbf{C}-\mathrm{H}$ Bond and $\mathrm{C}-\mathrm{C}$ Bond Oxidative Addition to Palladium and Platinum

	$\mathrm{Pd}+\mathrm{CH}_{4} \mathrm{Pd}$	$\mathrm{Pd}+\mathrm{C}_{2} \mathrm{H}_{6}$	CH_{4}
M olecular Complex			
$\Delta \mathrm{E}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)^{\mathrm{a}}$	-5.1 -34.6	C	-2.1
$\Delta \mathrm{E}^{\ddagger}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)$	$\begin{array}{cc} \text { Transition State } \\ 3.6 & -4.4 \end{array}$	19.5	$1.2^{\text {d }}$
Products			
$\Delta \mathrm{E}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$	-2.3 -7.2	-5.5	-32.0
$\begin{aligned} & \Delta \mathrm{E}^{\ddagger} \text { elim } \\ & \left(\mathrm{kcal}^{2} \mathrm{~mol}^{-1}\right)^{\mathrm{e}} \end{aligned}$	$5.9 \quad 2.8$	25.0	33.2
a The ZPE corrections are included; the spin-orbit correc-			
tions are taken into account for the platinum complexes; the			
values are relative to the free substrate and the metal atom			
in its ground state, i.e., Pd $\left({ }^{1} \mathrm{~S}\right)$ and the lowest component of the Pt d ${ }^{9} s^{1}\left({ }^{3} D_{3}\right)$; negative values correspond to exothermic			
complex is reported with a binding energy of $6.6 \mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{\mathrm{d}}$ This value refers to the crossing point between the singlet			
and the triplet surface, see text. A transition state on the			
singlet surface has been obtained at the SCF level, 10.5 kcal			
mol^{-1} bel ow the separated reactants. ${ }^{\mathrm{e}}$ Barrier for the reverse			

$12 \mathrm{kcal} \mathrm{mol}^{-1}$) with respect to the MCPF results. Thus, the comparative results obtained previously for palladium still hold, at least as Iong as the comparison is restricted to the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bond oxidative addition. ${ }^{107}$ There is one problem, however, arising from the comparison with the $\mathrm{Pd}+\mathrm{H}_{2}$ reaction. The MCPF calculations yield an exothermicity of 7.3 kcal mol^{-1} for the PdH_{2} product. ${ }^{352}$ If the $\mathrm{PCI}-80$ would further decrease this value, for PdH_{2} one would get a result at variance with the previous study of Balasubramanian in which the PdH_{2} system is about $5 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ above $\mathrm{Pd}\left({ }^{1} \mathrm{~S}\right)+\mathrm{H}_{2} .{ }^{57}$ Some clarification on this point is needed.
The platinum results for the reaction $\mathrm{Pt}+\mathrm{CH}_{4}$ are also of interest. ${ }^{109}$ The corresponding calculations were carried out with a large basis set and a newly developed relativistic effective core potential. This RECP not only treats the 5 s and 5 p electrons explicitly, but also the 4d electrons, which are described by one contracted orbital. The spin-orbit effects were taken into account via the total quenching model (i.e., assuming that the energy lowering due to spin-orbit effects takes place only for the platinum atom). The geometries were optimized at the MP2 level. The corresponding energy profile is shown in Figure 9. A salient feature is the crossing of the triplet and singlet surfaces at the beginning of the reaction. The crossing takes place at a very low energy, $1.2 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ above the reactants $\mathrm{Pt}\left({ }^{3} \mathrm{D}\right)$ $+\mathrm{CH}_{4}$. The spin-orbit interaction between these two states is not taken into account in the total quenching model. It should further lower the barrier arising from the crossing. The very low barrier is in agreement with the experimental findings. The very deep well for the $\mathrm{Pt}(\mathrm{H})\left(\mathrm{CH}_{3}\right)$ intermediate and the very high barrier associated with the subsequent H_{2} elimination (which is in fact nothing other than the reverse of a σ-bond metathesis reaction) leads to the result that $\mathrm{Pt}(\mathrm{H})\left(\mathrm{CH}_{3}\right)$ is most likely the final product of the gas-phase reaction. The effectiveness of the reaction of Pt with CH_{4} (and small alkanes) is therefore a consequence of the $d^{9} s^{1}$ ground state

Figure 9. Potential energy profile for the reaction between platinum and methane. (Reprinted with permission from ref 109.) Copyright 1995 American Chemical Society.
combined with a relatively low d^{10} state. As stated before, the $\mathrm{d}^{9} \mathrm{~s}^{1}$ state is well suited for the formation of two covalent bonds. Moreover, the presence of the low-energy d ${ }^{10}$ state diminishes long-range repulsion and allows the correlation in spin with the $\mathrm{H}-\mathrm{Pt}-$ CH_{3} complex. ${ }^{109}$ All these theoretical results, either on the palladium or platinum systems were shown to fit nicely with the experimental results within RRKM theory. ${ }^{107,109}$
Finally, two points of methodological interest, emerging from a recent and comprehensive study on the $\mathrm{C}-\mathrm{H}$ activation reaction of CH_{4} with all transi-tion-metal atoms from the three transition rows are worth being mentioned. ${ }^{353}$ The first one is that DFTB3LYP calculations compare very well with the $\mathrm{PCI}-$ 80 results for this reaction. The second point is that the total quenching model, which assumes that the major spin-orbit effect arises from the Pt atom, also works very well: the additional molecular spin-orbit effects, which were obtained via a parametrized oneelectron spin-orbit Hamiltonian as in the work of Schwarz et al. on Pt-H (vide supra), ${ }^{44}$ are very small, $0.5 \mathrm{kcal} \mathrm{mol}^{-1 .} .353$
There have been a few other studies dealing with the reaction of methane with Pd or Pt and with the corresponding cations Pd^{+}or Pt^{+}. Hada and Nakatsuji have carried out symmetry-adapted cluster Cl (SAC-CI) calculations of the reaction $\mathrm{Pt}+\mathrm{CH}_{4}$ but found unrealistically high barriers. ${ }^{354}$ This may arise from the use of Iarge-core pseudopotentials and/or relatively small basis sets. In their MCPF calculations on the same reaction, Swang et al. used a relatively large basis set, and for Pt a relativistic pseudopotential that keeps the $5 \mathrm{~s}, 5 \mathrm{p}$, and 4d orbitals frozen and describe the inner shells by a local potential. They did not incorporate spin-orbit effects. ${ }^{355}$ Taking into account these differences with Siegbahn and Blomberg's calculations, both sets of
results are in good agreement. In their study of the reaction of second-row transition-metal cations with CH_{4}, Blomberg, Siegbahn, and Svensson did not find any reactive channel for Pd^{+}. Only an η^{2} molecular complex could be identified, with a stabilization energy of $17.0 \mathrm{kcal} \mathrm{mol}^{-1}$ (MCPF calculations including zero-point vibrational corrections and relativistic effects through first-order perturbation theory). ${ }^{356}$ This large value is the result of a charge-induced di pole interaction and of the $d^{9} s^{0}$ ground state of the cation that minimizes the electron-electron repulsion. That no oxidative addition product could be found is in line with the previous results of Balasubramanian et al. for $\left[\mathrm{PdH}_{2}\right]^{+}$, where only a molecular adduct between H_{2} and Pd^{+}was found. ${ }^{63,65} \mathrm{Pt}^{+}$ behaves quite differently, since it reacts quite readily in the gas phase with $\mathrm{CH}_{4} .{ }^{357}$ Schwarz and coworkers have investigated this reaction theoretically and experimentally. ${ }^{358}$ The calculations were carried out at the DFT-B3LYP level (with a relativistic smallcore pseudopotential for Pt^{68} and a polarized double- ζ basis set for the ligands). As with $\mathrm{Pd}^{+}, \mathrm{CH}_{4}$ forms an adduct with Pt^{+}but it is somewhat more stable, the binding energy being $28.3 \mathrm{kcal} \mathrm{mol}^{-1}$. However, the reaction proceeds further through a very low barrier toward the hydridomethyl complex $\mathrm{H}-\mathrm{Pt}^{+}-\mathrm{CH}_{3}$ (which is below the adduct by an extra 11.5 kcal $\left.\mathrm{mol}^{-1}\right) . \mathrm{H}-\mathrm{Pt}^{+}-\mathrm{CH}_{3}$ then evolves via steps, which might be rate determining, first to the dihydrido methylene intermediate $\mathrm{H}_{2} \mathrm{Pt}^{+}-\mathrm{CH}_{2}$ and then to the dihydrogen methylene complex $\left(\mathrm{H}_{2}\right) \mathrm{Pt}^{+}-\mathrm{CH}_{2}$, prior to the final dissociation of H_{2}. That Pt^{+}can form, in contrast to Pd^{+}, a hydridomethyl complex with CH_{4} is traced to the much lower $\mathrm{d}^{9} \mathrm{~s}^{0} \rightarrow \mathrm{~d}^{8} \mathrm{~s}^{1}$ promotion energy in $\mathrm{Pt}^{+}\left(17.6 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ compared to $\mathrm{Pd}^{+}(74.4$ kcal mol^{-1}). The computed $\Delta \mathrm{G}_{298 \mathrm{~K}},-8.3 \mathrm{kcal} \mathrm{mol}^{-1}$, compares well with the experimental value, $-3.2 \pm$ $1 \mathrm{kcal} \mathrm{mol}^{-1}$. A similar energy profile has been obtained at the PCI-80 level in a collaborative effort with Siegbahn, Blomberg, and co-workers, except for the barrier toward the hydridomethyl complex which disappears at the higher level. ${ }^{359}$
Many of the results that have been discussed above for the $\mathrm{C}-\mathrm{H}$ oxidative addition (and reductive elimination) of methane on the bare Pd and Pt metal atoms are also found in the studies that have been devoted to the reaction of CH_{4} with zerovalent PdL_{2} and PtL_{2} molecular complexes. Sakaki and co-workers have analyzed the ability of the $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and Pt$\left(\mathrm{PH}_{3}\right)_{2}$ systems to undergo the oxidative addition in two different situations: either with two unconstrained PH_{3} ligands as a model of two monodentate phosphines such as PPh_{3} or with constraints in the geometry optimization that simulate the use of a chelating bidentate bisphosphine such as 1,2 -bis(dicyclohexylphosphine)ethane (dcpe $=\left[\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{PCH}_{2^{-}}\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}\right]\right)$ and bis(di-tert-butyl phosphino)methane (dbpm $\left.=\left[(t-\mathrm{Bu})_{2} \mathrm{PCH}_{2} \mathrm{P}(\mathrm{t}-\mathrm{Bu})_{2}\right]\right) .{ }^{360,361}$ In the most recent study the geometries were optimized at the MP2 level and the energies calculated at the MP4SDQ level, using the small-core pseudopotential of Hay ${ }^{68}$ and a valence double ζ basis set (polarized in some instances). A small molecular precursor is found in every case but with an almost negligible stabilization

Figure 10. Potential energy profiles (at the MP4SDTQ// MP2 level) for the reaction of CH_{4} with various ML_{2} complexes, $\mathrm{M}=\mathrm{Pd}$, Pt . (Reprinted with permission from ref 362.) Copyright 1997 American Chemical Society.
for $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$; in contrast, the systems that model the chelating phosphine lead to a definite stabilization energy of a few kcal mol^{-1}. As with the bare metals, the activation energy for $\mathrm{C}-\mathrm{H}$ bond oxidative addition is computed to be larger for Pd than for Pt. The difference amounts to about 7 kcal mol^{-1} when starting from the linear $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}$ systems that model the nonchelating case. It is much more important for the systems that model the chelating ligand: for the Pd(dcpe) model system the computed activation energy is $20.0 \mathrm{kcal} \mathrm{mol}^{-1}$, to be compared with $3.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the $\mathrm{Pt}(\mathrm{dcpe})$ model system (MP4SDQ values). This differential effect, which is in agreement with the known experimental data, is traced to the ability of the $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}$ skeleton to distort. ${ }^{361}$ A distorted ML_{2} skeleton has its d_{π} orbital high in energy. This orbital can therefore interact quite strongly with the $\sigma^{*}{ }_{\text {С-н }}$ orbital. Similar features have been obtained more recently by Su and Chu in their comparison of the energy profiles for the reaction of CH_{4} with $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}, \mathrm{M}(\mathrm{CO})_{2}$, and $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{PCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{PH}_{2}$). ${ }^{362}$ Figure 10 summarizes their results and clearly shows that for the Pt system with the chelating diphosphine ligand there is almost no reaction barrier. Rather than using molecular orbital interaction arguments, Min and Su base their reasoning on valence-bond-type arguments using the curve crossing model of Pross and Shaik. ${ }^{363}$ They relate the size of the barrier to the singlet to triplet state separation in the ML_{2} system: Thus, a bent system will have a smaller separation leading to a lower barrier; the singlet-triplet separation is also smaller in the Pt systems compared to the Pd systems, therefore accounting for a smaller barrier in the former. The effects of the ligands can be explained in the same way. One should note that the singlet-triplet separation can be correlated with the destabilization of the d_{π} orbital and the stabilization of the d_{σ} orbital, both factors leading to a smaller barrier in a molecular orbital interaction explanation.

As seen from Figure 10, chelating diphosphine ligands that have a small bite angle lead to a
decrease of the activation barrier. However, for CH_{4} the barrier remains relatively high and the overall reaction is endothermic. Sakaki and co-workers have analyzed ${ }^{364}$ why on introduction of electron-withdrawing substituents such as CN the energy barrier for this reaction is noticeably decreased and the reaction becomes exothermic, accounting for its observation in experiments. ${ }^{365}$ They found that the main factor lies in the conjugation of the π^{*} orbital of CN with the σ^{*} orbital of $\mathrm{C}-\mathrm{H}$. This stabilizes the σ^{*} orbital, thus leading to an increased charge transfer to this orbital.

Hill and Puddephatt have considered in a recent study based on EHMO and DFT-B3LYP calculations the reductive elimination of CH_{4} or $\mathrm{C}_{2} \mathrm{H}_{6}$ from various five-coordinate $\mathrm{Pt}(\mathrm{IV})$ complexes (and the reverse reaction, the oxidative addition of the $\mathrm{C}-\mathrm{H}$ bond as well). ${ }^{366}$ As expected, $\mathrm{C}-\mathrm{H}$ reductive elimination and oxidative addition are much easier than $\mathrm{C}-\mathrm{C}$ reductive elimination and oxidative addition. Their conclusions generally agree with experimental knowledge, except for the comparison between NH_{3} and PH_{3} as ligands. At variance with experiment where the reductive elimination appears to be much easier with phosphine than with amine as a ligand, a similar activation energy of $25 \mathrm{kcal} \mathrm{mol}^{-1}$ is computed in both cases. Perhaps the model chosen for the phosphine, here PH_{3}, is inadequate from an electronic and/or a steric point of view. The primary product of the reductive elimination is found to be a molecular adduct between CH_{4} and a T-shaped $\mathrm{Pt}(\mathrm{II})$ tricoordinate complex, with an η^{2} coordination mode. In this adduct one $\mathrm{Pt}-\mathrm{H}$ bond is $2.07 \AA$ and the $\mathrm{Pt}-\mathrm{C}$ bond is $2.59 \AA$. The other $\mathrm{Pt}-\mathrm{H}$ bond is longer, $2.38 \AA$. One should note here that somewhat similar structures have been obtained for adducts of CH_{4} with T-shaped tricoordinate complexes of $\mathrm{Pd}(\mathrm{II})^{367}$ and $\mathrm{Rh}(\mathrm{I}) .{ }^{368,369}$ The structure of the ethane adduct corresponds again to an η^{2} coordination mode, since one hydrogen atom on one carbon is $2.24 \AA$ away from Pt whereas another hydrogen from the second carbon atom is much further from Pt, at $2.60 \AA$.

Despite its importance in cross-coupling reactions, to our knowledge there has not been an ab initio study of the reductive elimination of propene from vinyl-methyl palladium complexes. An extended Hückel study, using the cis- $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)\right.$ $\left(\mathrm{CH}=\mathrm{CH}_{2}\right)$] system as a model, has put forth a mechanism involving a methyl migration toward the coordinated vinyl ligand rather than a concerted elimination. ${ }^{370}$ The two transition states, which have been approximately determined, are quite alike however. Thus, considering the approximate nature of both the theoretical method and the transitionstate determination, no definite conclusion can be drawn. One should point out that a comparison with the reductive elimination from $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2}\right]$ shows a much higher barrier for the latter process. ${ }^{370}$ This is not surprising if one recalls the results of Fahmi and van Santen ${ }^{136}$ and of Siegbahn et al. ${ }^{348}$ As computed from Table 5, the barrier for the reductive elimination reaction from $\left[\mathrm{Pd}(\mathrm{H})\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\right]$ is 2.5 kcal mol^{-1}, whereas it amounts to $23.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the reductive elimination from $\left[\mathrm{Pd}\left(\mathrm{CH}_{3}\right)_{2}\right](\mathrm{CCSD}(\mathrm{T})$ val-
ues). A similar value of $6 \mathrm{kcal}^{-1} \mathrm{~mol}^{-1}$ for the reductive elimination from $\left[\mathrm{Pd}(\mathrm{H})\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)\right]$ has been computed at the DFT-NL level by Fahmi and van Santen. ${ }^{136}$

The oxidative addition of bonds other than the $\mathrm{C}-\mathrm{H}$ bond has been also considered. We have already mentioned, in the context of the $\mathrm{Pd}-\mathrm{NH}_{3}$ and $\mathrm{Pd}-$ OH_{2} bare metal-ligand systems, the studies of Blomberg, Siegbahn, and co-workers for the oxidative addition of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bonds to the palIadium atom. ${ }^{81,82}$ At the CCSD(T) level, the $\mathrm{Pd}+\mathrm{NH}_{3}$ and $\mathrm{Pd}+\mathrm{H}_{2} \mathrm{O}$ reactions are endothermic, by 3.6 and $9.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. At the same level of calculation, the value for $\mathrm{Pt}+\mathrm{CH}_{4}$ is $5.6 \mathrm{kcal} \mathrm{mol}^{-1}$, see Table 5. The larger endothermicity for the $\mathrm{H}_{2} \mathrm{O}$ reaction has been ascribed to the presence of one more lone pair on $\mathrm{H}_{2} \mathrm{O}$ compared to NH_{3}, thus leading to more electron-electron repulsion. The more diffuse character of the ammonia lone pair compared to the water lone pair, which was influential for the longrange electron donation mechanism in the two molecular complexes, is of less importance for the product due to the shorter $\mathrm{M}-\mathrm{N}$ (and $\mathrm{M}-\mathrm{O}$) distances. ${ }^{82}$ The barriers for the oxidative addition are in the order $\mathrm{CH}_{4}\left(10.6 \mathrm{kcal} \mathrm{mol}^{-1}\right)<\mathrm{NH}_{3}(12.6 \mathrm{kcal}$ $\left.\mathrm{mol}^{-1}\right)<\mathrm{H}_{2} \mathrm{O}\left(21.6 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. It should be noted that in the transition state, as in the products, the geometry of PdNH_{2} is pyramidal and that of PdOH is bent as a result of the covalent nature of the $\mathrm{Pd}-\mathrm{N}$ or $\mathrm{Pd}-\mathrm{O}$ bonds in the transition states and in the products.

The oxidative addition of the $\mathrm{O}-\mathrm{H}$ bond to palIadium and platinum complexes has also been investigated. For palladium the process leading from a square-planar $\operatorname{Pd}(\mathrm{II})$ to an octahedral $\operatorname{Pd}(I V)$ has been examined (at the MP2 level with a valence double ζ basis set and a relativistic small-core pseudopotential) on the cis- and trans- $\left[\mathrm{Pd}(\mathrm{H})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ model systems. ${ }^{367}$ Both the energy barrier and the reaction energy were found to be quite dependent on the stereochemistry of the product, the facial arrangement of the three hydrogens atoms yielding a greater exothermicity and a smaller barrier. In the most favorable case, i.e., $\mathrm{H}_{2} \mathrm{O}+$ cis- $\left[\mathrm{Pd}(\mathrm{H})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \rightarrow$ fac$\left[\mathrm{Pd}(\mathrm{H})_{3}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{2}\right]$, the barrier is $28.8 \mathrm{kcal} \mathrm{mol}^{-1}$ and the reaction is exothermic by $23.4 \mathrm{kcal} \mathrm{mol}^{-1}$. The thermodynamics of the addition of $\mathrm{H}_{2} \mathrm{O}$ on a more realistic system involving a tris(pyrazol-1-yl)borate complex of $\mathrm{Pd}(\mathrm{II})$ has been investigated also in the framework of a theoretical study of the reduction of water to H_{2} by such complexes. ${ }^{371}$ Here too the thermodynamics is greatly influenced by the stereochemistry of the product. A recent study of Su and Chu has addressed the possibility of the $\mathrm{O}-\mathrm{H}$ oxidative addition of methanol to the zerovalent PtL_{2} system, focusing again on the influence of the bite angle of the two ligands. ${ }^{372}$ As for the $\mathrm{C}-\mathrm{H}$ bond oxidative addition, ${ }^{361,362}$ the DFT-B3LYP calculations show that the small bite angle of either the dppm or the dppe ligand promote the oxidative addition, by strongly reducing the barrier of the reaction and by increasing its exothermicity. The σ-donor ability of the ligand also plays a role. ${ }^{372}$

At this stage one should not forget that in some instances σ-bond metathesis reactions with a metal-

Figure 11. Transition state for the H_{2} elimination from the $\mathrm{Pd}-\mathrm{H} \cdots \mathrm{H}-\mathrm{N}$ dihydrogen bond in $\left[\mathrm{Pd}\left(\mathrm{Me}_{2}\right)(\mathrm{H})(\mathrm{OH})\left\{\mathrm{pz}_{2}-\right.\right.$ (pzH) BH \}]. Bond distances are in \AA, angles are in degrees.
ligand bond might be competitive with the oxidative addition to the metal. ${ }^{373}$ Such reactions have been investigated for $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{IV})$ complexes and the corresponding transition states determined and discussed either for H_{2} or $\mathrm{O}-\mathrm{H}$ addition. ${ }^{367,374}$ The Shilov reaction, ${ }^{375}$ viz. the activation of an alkane $\mathrm{C}-\mathrm{H}$ bond by $\mathrm{Pt}(\mathrm{II})$ complexes in aqueous solution, has been shown by Siegbahn and Crabtree to take place via a σ-bond metathesis between the $\mathrm{C}-\mathrm{H}$ bond and the $\mathrm{Pt}-\mathrm{Cl}$ bond, with some extra water molecules participating to the coordination sphere. ${ }^{376}$ The computed DFT-B3LYP energy barrier from the $\eta^{2}-\mathrm{CH}_{4}$ molecular precursor is $27 \mathrm{kcal} \mathrm{mol}^{-1}$, in very good agreement with the experimental estimate. ${ }^{375}$ The importance of the presence of a lone pair in the reacting moiety to induce the heterolytic cleavage (or recombination) of H_{2} has been recognized. ${ }^{367,373}$ Also related to this process is the elimination of H_{2} from a system having a so-called $\mathrm{M}-\mathrm{H} \cdots \mathrm{H}-\mathrm{X}$ "dihydrogen bond". ${ }^{377}$ The report of the first theoretical determination of the transition state for such a process postulated in the mechanism of the reduction of water to H_{2} mediated by a tris(pyrazol-1-yl)borate complex of $\operatorname{Pd}(\mathrm{II})$, Figure 11, has been published recently. ${ }^{371} \mathrm{~A} \sigma$-bond "metathesis-like" pathway between a B-S bond and a Pd-alkyne bond has also been put forth by Morokuma and co-workers ${ }^{378}$ as a key step in the mechanism of the al kyne thioboration catalyzed by Pd complexes. In this case the hypervalent nature of the sulfur atom is thought to play an important role, since the corresponding transition state for the reaction between a $\mathrm{B}-\mathrm{B}$ bond and a $\mathrm{Pd}-$ alkyne bond in the alkyne diboration process is much higher in energy. ${ }^{378}$

The addition of $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{X}$ bonds to $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and $\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ complexes has been treated quite extensively by Sakaki and co-workers over the years. ${ }^{350,360,379-381}$ One of the goals of these studies was to compare the $\mathrm{Si}-\mathrm{H}$ and $\mathrm{Si}-\mathrm{X}$ oxidative additions to the $\mathrm{C}-\mathrm{H}$ and the $\mathrm{C}-\mathrm{C}$ bond oxidative additions. Although it is sometimes difficult to make a strict comparison from one article to another, due to some slight changes in the basis sets that have been used, one can nevertheless grasp a quite coherent picture. We have previously mentioned the study of the correlation effects on the geometry optimization showing that although the geometries can vary to a rather large extent upon introduction of electron correlation at the MP2 level, the effect on the relative

Table 7. Comparative Energy Results (in kcal mol ${ }^{-1}$) for the $\mathrm{C}-\mathrm{H}, \mathrm{Si}-\mathrm{H}, \mathrm{C}-\mathrm{C}, \mathrm{Si}-\mathrm{Si}$, and $\mathrm{Si}-\mathrm{C}$ Bond Oxidative Addition to Palladium and Platinum

reaction	precursor	ansition state	products	ref
Pd Complexes				
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{CH}_{4}{ }^{\text {a }}$	-0.7	36.9	34.1	361
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{SiH}_{4}{ }^{\text {a }}$	-2.3	0.5	-6.6	350
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~b}, \mathrm{c}$	-1.4	56.8	30.5	380
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{Si}_{2} \mathrm{H}_{6} \mathrm{a,d}$	-3.0	13.3	-17.1	350
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{SiH}_{3} \mathrm{CH}_{3}{ }^{\text {b,e }}$	-2.5	16.3	8.1	380
Pt Complexes				
$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{CH}_{4}{ }^{\text {a }}$	-0.8	29.9	9.9	361
$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{SiH}_{4}{ }^{\text {a }}$	-2.2	2.4	-21.9	350
$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~b}, \mathrm{c}$	-1.1	66.0	5.2	380
$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{Si}_{2} \mathrm{H}_{6} \mathrm{a}$, d	-3.1	17.5	-34.8	350
$\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}+\mathrm{SiH}_{3} \mathrm{CH}_{3}{ }^{\text {b,e }}$	-2.3	24.9	-14.1	380

a MP4SDQ//MP2 result. ${ }^{\text {b }}$ MP4SDQ//HF result. ${ }^{c} \mathrm{C}-\mathrm{C}$ bond oxidative addition. ${ }^{d} \mathrm{Si}-\mathrm{Si}$ bond oxidative addition. ${ }^{\mathrm{e}} \mathrm{Si}-\mathrm{C}$ bond oxidative addition.
energies is not substantial. ${ }^{350}$ Table 7 summarizes the results of the best calculations corresponding to MP4SDQ energies computed on either HF-optimized geometries (MP4SDQ//HF) or on MP2-optimized geometries (MP4SDQ//MP2). The oxidative addition of $\mathrm{Si}-\mathrm{H}$ proceeds much more easily than the oxidative addition of $\mathrm{C}-\mathrm{H}$, with almost no energy barrier and a rather Iarge exothermicity for either Pd or Pt. The $\mathrm{Si}-\mathrm{Si}$ oxidative addition is also much easier than the $\mathrm{C}-\mathrm{C}$ oxidative addition and slightly easier than the $\mathrm{Si}-\mathrm{C}$ bond oxidative addition, Table 7. The substituent effects on Si for the oxidative addition reaction $\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\right]+\mathrm{HSiX} 3 \rightarrow\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{SiX}_{3}\right)\left(\mathrm{PH}_{3}\right)_{2}\right](\mathrm{X}=\mathrm{H}, \mathrm{Cl}$, Me) have been analyzed in the framework of a theoretical investigation of the catalytic cycle for platinum-catalyzed hydrosilylation of alkenes. ${ }^{381}$ The energy barrier is almost insensitive to the substituents due to the reactant-like nature of the transition states. In contrast, the reaction exothermicity increases in the order $\mathrm{Me}\left(16.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)<\mathrm{H}(21.9$ $\left.\mathrm{kcal} \mathrm{mol}^{-1}\right)<\mathrm{Cl}\left(32.3 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, MP4SDQ values. All these features have been rationalized in terms of the various bond energies. ${ }^{381}$

Sakaki et al. have had more difficulties rationalizing the fact that the oxidative additions involving a $\mathrm{Si}-\mathrm{X}$ bond have lower activation energies for Pd than for Pt, in contrast to what was expected from the known results on $\mathrm{C}-\mathrm{H}$ oxidative addition. Their explanation is based on an energy decomposition analysis combined with a careful inspection of difference density maps for the $\mathrm{Si}-\mathrm{Si}$ bond oxidative addition. For this reaction (and this should hold for the other oxidative additions of $\mathrm{Si}-\mathrm{X}$ as well), the early transition state (i.e., reactant-like) is characterized by a greater amount of exchange repulsion (i.e., electron-electron repulsion) for Pt than for $\mathrm{Pd} .{ }^{350}$ Indeed, the Pt 6 s population of $\operatorname{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ is greater than the Pd 5 s population of $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$. Sakaki has related this effect to the smaller energy gap between 5 d and 6 s in $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ compared to the gap between $4 d$ and 5 s in $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$. One finds again the argument of Siegbahn, Blomberg, and co-workers that the s^{0} state is important when a large electron-electron repulsion (as the one provided here by the two silyls) is expected. One might argue that this proposal
disagrees with the conclusion of Su and Chu ${ }^{362}$ that one can correlate the activation barrier with the singlet to triplet energy difference. However, in the case of the $\mathrm{C}-\mathrm{H}$ bond oxidative addition, which was the one considered by Su and Chu, the transition states are more product-like. Thus, a lower triplet that favors the product also favors the transition state.

For the oxidative addition of SiH_{4}, a comparison between $\mathrm{M}\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{M}=\mathrm{Pt}, \mathrm{Pt})$ and $\left[\mathrm{MCl}(\mathrm{CO})\left(\mathrm{PH}_{3}\right)_{2}\right]$ ($\mathrm{M}=\mathrm{Rh}, \mathrm{Ir}$) has been made. ${ }^{382}$ An explanation has been provided for the greater reactivity of the diphosphine palladium and platinum systems over the Vaska-type complexes. Sakaki has also investigated the oxidative addition of $\mathrm{BX} 2-\mathrm{BX} 2$ to $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ and compared it to the oxidative addition of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{Si}$ bonds. ${ }^{383}$ An interesting feature is the participation, in addition to the σ^{*} orbital, of the unoccupied π and π^{*} orbitals to the stabilization of the transition state. This explains why the reaction is relatively easy despite the stronger B-B bond. At the MP4SDQ//MP2 level, the reaction of $\mathrm{B}(\mathrm{OH})_{2}-\mathrm{B}(\mathrm{OH})_{2}$ with $\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}$ is exothermic by $22.2 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ with respect to the reactants. The energy barrier is $4.1 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the reactants and $13.3 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the molecular precursor complex. In the case of palladium, the reaction goes uphill from the precursor complex. The transition state and the cis product could be located during the MP2 geometry optimization, but when the energies are recomputed at the MP4SDQ level they lie 0.2 and $1.6 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants, respectively. A similar behavior has been observed by Morokuma and co-workers in the course of their study of the alkyne and alkene diboration catalyzed by platinum and palladium diphosphine complexes. ${ }^{384,385}$ They find, however, for the cis product of the oxidative addition of $\mathrm{B}(\mathrm{OH})_{2}-\mathrm{B}(\mathrm{OH})_{2}$ to Pd $\left(\mathrm{PH}_{3}\right)_{2}$ a very shallow energy well, $0.1 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ below the transition state. As in Sakaki's calculations, the overall reaction is endothermic (by 5.0 kcal $\left.\mathrm{mol}^{-1}\right) . .^{385}$ The oxidative addition of the $\mathrm{S}-\mathrm{B}$ bond to $\mathrm{Pd}(0)$ complexes is even less likely to occur, due to the weaker nature of the $\mathrm{Pd}-\mathrm{S}$ bond compared to the Pd-B bond. Indeed, in their study of the Pd-catalyzed thioboration of alkynes, Morokuma and co-workers could not find any energy minimum that would correspond to the product of this oxidative addition. ${ }^{378}$
Reactions with Metallic Clusters. A good starting point to analyze the reactions of H_{2} and CH_{4} with palladium and platinum clusters is the 1991 study that Balasubramanian performed for the $\mathrm{Pt}_{2}+\mathrm{H}_{2}$ reaction. ${ }^{336} \mathrm{In}$ this work, potential energy curves were obtained using the same methodology as the one used in his previous studies of PtH and Pt_{2} (vide supra), viz. CASSCF calculations followed by MRSDCI and relativistic Cl calculations including spin-orbit coupling. ${ }^{34,238}$ Owing to this high level of theory, limitations had to be made when scanning the potential energy surfaces. The more severe ones are probably the restrictions to a few predefined approaches with an imposed symmetry and in particular for every approach a coplanar arrangement of Pt_{2} and H_{2}, see 17a-d. According to these calculations, the most

productive pathway is $\mathbf{1 7 a}$ for the ${ }^{1} \mathrm{~A}_{1}$ state $\left(\mathrm{C}_{2 \mathrm{v}}\right.$ symmetry). This pathway leads, after a spontaneous rearrangement of the cis-product 18, to the trans product 19, which is found to be $3 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy. The overall reaction is found to be exo-

18

19
thermic, by $30.7 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$ state of Pt_{2} (which is the lowest state of Pt_{2} that correlates with ${ }^{1} \mathrm{~A}_{1}$ of $\mathrm{Pt}_{2} \mathrm{H}_{2}$ in the absence of spinorbit coupling). The barrier for this approach amounts to about $21 \mathrm{kcal} \mathrm{mol}^{-1}$. The spin-orbit coupling stabilizes 19 by about $2.8 \mathrm{kcal} \mathrm{mol}^{-1}$. The effects are much larger, however, in the dissociation limit region, $\sim 27 \mathrm{kcal} \mathrm{mol}^{-1}$, where the state of Pt_{2} is found to be a mixture of triplet $\left[{ }^{3} \Sigma_{g}{ }^{-}\left(0_{g}{ }^{+}\right)\right]$and singlet $\left.{ }^{[} \Sigma_{g}{ }^{+}\left(0_{g}{ }^{+}\right)\right]$. The overall exothermicity is therefore strongly reduced to about $5-6 \mathrm{kcal} \mathrm{mol}^{-1}$. The other approaches, $\mathbf{1 7 b}$-d, were also investigated but were found less favorable, at least for the ${ }^{1} \mathrm{~A}_{1}$ state. It is nevertheless interesting to mention (with respect to the subsequent studies) that in approach 17d a molecular complex of H_{2} was found, 20, Iying slightly below the separated reactants (no stabilization energy is given, but from the reported energy curve a value of $2-3 \mathrm{kcal} \mathrm{mol}^{-1}$ can be estimated). The

20

21
reaction in this approach proceeds via a very high barrier ($\sim 75 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$) to the dibridged intermediate shown in 21, this intermediate being 22 kcal mol^{-1} above 19. Somewhat similar results have been obtained subsequently by Poulain et al. ${ }^{387}$ In their MCSCF +MRCl calculations, constrained approaches of H_{2} were again considered. Moreover, the $\mathrm{Pt}-\mathrm{Pt}$ bond lengths were not optimized, to avoid reconstruction effects of the surface. Thus, their calculations
pertain more to surface studies. They also favor the parallel approach 17a. For approach 17d, keeping the $\mathrm{H}-\mathrm{H}$ distance fixed leads to a molecular adduct, stabilized by $4 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. However, on relaxation of the $\mathrm{H}-\mathrm{H}$ distance, the oxidative addition takes place, yielding a $\mathrm{Pt}-\mathrm{PtH} 2$ di hydride structure. The reaction energy for this addition on one Pt end is less than the one obtained previously for $\mathrm{Pt}+\mathrm{H}_{2}{ }^{54}$ This points to some deactivating effect of the second platinum atom. It is interesting to note here that a deactivating effect of Ru in PtRu with respect to Pt_{2} has been proposed for the same approach on the basis of NLDFT calculations. ${ }^{388}$
So far the most extensive study on the $\mathrm{Pt}_{2}+\mathrm{H}_{2}$ reaction has been the one of Musaev, Morokuma et al. ${ }^{237}$ Since they were primarily interested in the cluster chemistry, they have performed full geometry optimizations using the DFT-B3LYP method after a careful assessment of its performance (against CASPT2 calculations for Pt_{2}, vide supra) and of the basis sets to be used. The full geometry optimization for singlet and triplet states leads to a reaction mechanism which is dramatically different from the previously discussed mechanisms that were based on the limited potential energy surface scans. Some of the steps of Musaev Morokuma et al. mechanism, however, have their anal ogue in these limited scans. One should also note that spin-orbit coupling effects were not taken into account in this study, although we have seen that they may be important for the platinum systems. The reaction mechanism for Pt_{2} $+\mathrm{H}_{2}$ is best summarized in Figure 12, together with the schematic potential energy profiles for the CH_{4} attack (vide infra). According to this reaction mechanism, the H_{2} attacks begins at one platinum atom, yielding a dihydrogen complex $\mathbf{P t}_{\mathbf{2}} \mathbf{X} \mathbf{X}$ Mol whose ground state is a triplet ${ }^{3} \mathrm{~A}^{\prime}$ (at $14.3 \mathrm{kcal} \mathrm{mol}^{-1}$ below the ground-state reactants) and with a nonplanar geometry at platinum. This nonplanar geometry is due to the involvement of the d_{δ} orbitals in the binding. The singlet ${ }^{1} \mathrm{~A}^{\prime}$ planar structure lies 8.2 kcal mol^{-1} above the nonplanar structure. Then $\mathrm{H}-\mathrm{H}$ cleavage takes place on a single platinum atom, leading to a strongly pyramidal PtPtH_{2} dihydride ($\mathbf{P t}_{\mathbf{2}}$ _X_Coml), the ${ }^{1} \mathrm{~A}^{\prime}$ state now being slightly more stable than the ${ }^{3} \mathrm{~A}^{\prime}$ state. The activation energy is negligible for both states. The final step, which also has a low barrier, is a 1,2 shift of hydrogen from one platinum atom to the other, leading to the final product ($\mathbf{P t}_{2}$ _X_Com2) with one hydride on each platinum, the structure being gauche rather than cis planar or trans planar (the two planar structures being transition states). The relative stabilities and the structures of the intermediates have been rationalized via molecular orbital interaction arguments. Perhaps a discussion of the 1,2 shift, which is interesting not only from a theoretical point of view but also with respect to surface hopping, might have been appropriate.
The oxidative addition of H_{2} on Pd_{2} has been analyzed in the same study. ${ }^{237}$ Musaev, Morokuma et al. found in this case only one singlet ${ }^{1} A^{\prime}$ minimum, $36.6 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ bel ow the ground-state reactants. No transition state could be characterized on the singlet

Figure 12. Schematic energy profile for the H_{2} (lower line) and CH_{4} (upper line) activation on Pt_{2}. Solid lines are for singlet electronic states and dotted lines for triplet states. (Reprinted with permission from ref 237.) Copyright 1998.
surface. The triplet electronic states were computed to be much higher in energy. Remember that the ground state of Pd_{2} is the triplet ${ }^{3} \Sigma_{\mathrm{u}}{ }^{+}$. Thus, in the H_{2} activation process an intersystem crossing mechanism is involved. The structure of the minimum corresponds to a dibridged structure, as in 21, although it is not perfectly planar but slightly distorted, the $\mathrm{H}-\mathrm{Pd}-\mathrm{Pd}-\mathrm{H}$ dihedral angle being 168.5°. N ote that similar features were already found by either Blomberg et al. ${ }^{227}$ or Poulain and coworkers. ${ }^{389}$ An analysis of trajectories using a reac-tion-path Hamiltonian ${ }^{390}$ based on semiempirical CNDO calculations also agrees with these results. ${ }^{391}$ The computed MCPF reaction energy of Blomberg et al. ($35.1 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$) is very similar to the above DFTB3LYP value. Thus, the H_{2} activation process is much more effectively done by Pd_{2} in comparison to Pd al one, in contrast to the Pt_{2} case. All these results have been rationalized also using molecular orbital arguments.
The oxidative addition of methane on Pt_{2} and Pd_{2} has also been the subject of various studies. For Pt_{2} $+\mathrm{CH}_{4}$, Musaev, M orokuma et al. point to a mechanism very similar to the one delineated for $\mathrm{Pt}_{2}+\mathrm{H}_{2}$, Figure $12 .{ }^{237}$ There is, however, a higher barrier on the singlet surface for the initial oxidative addition on the platinum atom, $10.7 \mathrm{kcal} \mathrm{mol}^{-1}$. The barrier is lower for the triplet, $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$ only. The first intermediate, the second transition state, and the final product are more stable on the singlet-state surface, Figure 12. The final product on this surface is $25.1 \mathrm{kcal} \mathrm{mol}^{-1}$ below the reactants, the corre sponding triplet minimum being $9.0 \mathrm{kcal} \mathrm{mol}^{-1}$ higher, i.e., still rather low with respect to the reactants. Hence, starting from the ground-state triplet of Pt_{2}, the activation of H_{2} can take place either on the triplet surface where the barrier in the entrance channel is low or the system can cross over to the singlet electronic state in the vicinity of the
first intermediate. Musaev, Morokuma et al. also argued that for Pt alone the $\mathrm{Pt}+\mathrm{CH}_{4}$ reaction could not start spontaneously from the ground state of the Pt atom and that it would be slow due to the necessity of intersystem crossing. This would in turn explain an experimental observation that CH_{4} is activated by Pt with a rate which is slower than Pt_{2-5} by nearly an order of magnitude. ${ }^{392}$ We have seen, however, in Siegbahn and co-workers' study that a very low crossing point was found for the $\mathrm{Pt}+\mathrm{CH}_{4}$ reaction, Figure 9.
For $\mathrm{Pd}_{2}+\mathrm{CH}_{4}$, the calculations of Blomberg et al. used MCPF calculations. ${ }^{227}$ The optimizations were performed at the Hartree-Fock level with constraints (in particular C_{5} symmetry), either for the intermediate or for the optimization of the transition state. From a methodological point of view it is worthwhile to note the effect of f polarization functions which yield lower barriers and more stable products. The product was found to have a geometry similar to that of the H_{2} oxidative addition. Under C_{s} symmetry, a transition state for the $\mathrm{C}-\mathrm{H}$ cleavage was localized on the singlet surface. A low barrier of $6.5 \mathrm{kcal} \mathrm{mol}^{-1}$ was obtained. The full optimization procedure of Musaev, Morokuma et al. ${ }^{237}$ led to somewhat different results, since an alternative pathway involving an asymmetric approach of CH_{4} with respect to the two palladium atoms, via the transition state 22 shown in Figure 13, has been put forth. The energy barrier between the molecular precursor and the transition state is only 3 kcal mol^{-1}. The approach is driven by the preference for CH_{3} to a make a directional bond, due to the sp^{3} hybridization. The asymmetric product $\mathbf{2 3}$ is found very close in energy to the symmetric one 24, Figure 13. One should note here the previous calculations carried out by Broclawik et al. at the DFT-BLYP level (i.e., with nonlocal exchange and correlation corrections). ${ }^{393}$ The computed geometries for the mol ecular

24 (-6.8)
Figure 13. Computed pathway for the reaction of $\mathrm{CH}_{4}+\mathrm{Pd}_{2}$. (Reprinted with permission from ref 237.) Copyright 1998.
precursor and for the transition state are quite similar to those of Musaev et al. They obtain an energy barrier of $5.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The computed geometry of the final product is the symmetrical one also found by Blomberg et al. F or the same reaction $\mathrm{Pd}_{2}+\mathrm{CH}_{4}$ Mamaev et al. again performed an analysis of trajectories using a reaction-path Hamiltonian based on semiempirical CNDO calculations. ${ }^{394}$ Their results are closer to the ones of Musaev et al. than to the ones of Blomberg. They get, in particular, a transition state corresponding to an asymmetric attack of the two palladiums.

Some work has been finally devoted to the reactivity of the Pd_{3} and Pt_{3} clusters. The initial studies, either of Balasubramanian et al. on $\mathrm{Pd}_{3}+\mathrm{H}_{2}$ and $\mathrm{Pt}_{3}+\mathrm{H}_{2}{ }^{395}$ or of Poulain et al. ${ }^{389}$ on $\mathrm{Pd}_{3}+\mathrm{H}_{2}$, suffer from the same shortcomings as their studies on the dimers, namely, the use of limited potential energy surface scans. For the in-plane approach of H_{2} parallel to one metal-metal bond, Balasubramanian concludes to a smaller barrier for Pt compared to Pd. On the other hand, the reaction energy is greater for Pd_{3} compared to $\mathrm{Pt}_{3} .{ }^{395} \mathrm{~A}$ different picture has been obtained by Musaev, M orokuma et al. ${ }^{245}$ after a full geometry optimization. Many intermediates and transition states are involved, and we refer the interested reader to the original paper. It is worth mentioning, however, some salient features and results. The reaction of H_{2} on Pd_{3} is very facile: it takes place without an energy barrier, leading directly to the product. For the addition of CH_{4} on Pd_{3}, two activation pathways are found as with Pd_{2}. The two processes are exothermic but they have relatively high barriers, 18.0 and $14.6 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. That these barriers are much higher than those for Pd_{2} is in agreement with the experimental findings. ${ }^{392} \mathrm{~F}$ or the systems $\mathrm{Pt}_{3}+\mathrm{H}_{2}$ and $\mathrm{Pt}_{3}+\mathrm{CH}_{4}$, the reactions follow the same pattern as for Pt_{2}, viz.
cleavage of the $\mathrm{H}-\mathrm{H}$ bond or $\mathrm{C}-\mathrm{H}$ bond on one single atom followed by a 1,2 shift of hydrogen. No activation barrier was found for H_{2}, and a smaller barrier compared to Pt_{2} was found for the $\mathrm{C}-\mathrm{H}$ activation.

The increase of the number of intermediates close in energy and of isomerization pathways on going from Pt_{2} to Pt_{3} points to the increased complexity of this type of microscopic analysis and perhaps to its limitations. Although Musaev, Morokuma et al. conclude with their belief in the possibility of unravelling the size-dependent effects of such clusters, one may worry that some of these intermediates and pathways might be missed for clusters of higher nuclearity. In a sense the problems to be solved should be somewhat similar to those associated with the global energy minimum search in very Iarge molecules.

2. Migratory Insertion and Deinsertion, β-Hydride Elimination

This reaction is a very important step (sometimes the rate determining one) in many palladium- and platinum-mediated or -catalyzed processes. The most frequently encountered reactions involve the insertion of either CO or ol efins into metal hydride, metal methyl, or metal alkyl bonds and their respective inverse reactions. As for the oxidative addition, their basic electronic features were unravelled prior to 1990. It was shown, in particular, that the actual mechanism involves a migration of the σ-donor ligand ($\mathrm{H}, \mathrm{CH}_{3}$, or the higher alkyl) to the ligand with π properties (the olefin or CO). ${ }^{14}$ The theoretical studies that were carried out in the last 10 years have focused on a precise comparison between transition metals within a row, on the influence of the alkyl chain length, and on the comparison of the insertion into the metal-hydrogen or the metal-carbon bond with the insertion into the metal-Si bond. The recent
finding that the elements of the nickel triad can be active in polymerization of olefins ${ }^{396,397}$ and alternating copolymerization of carbon monoxide and olefins ${ }^{398-400}$ has also attracted the interest of theoreticians.

The Olefin Insertion Reaction. Siegbahn has performed a detailed comparative study of the ol efin insertion reaction into the metal-hydrogen and metal-carbon bonds for the entire second row of transition metals. ${ }^{401-403}$ This study has been first restricted to the monovalent $\mathrm{M}-\mathrm{H}$ and divalent MH_{2}, MHCI , and MHF systems. ${ }^{402,403}$ Unfortunately in the palladium case the comparison between the monovalent and divalent systems is hampered by the fact that the π complex of PdH_{2} does not correspond to a dihydride interacting with $\mathrm{C}_{2} \mathrm{H}_{4}$ but rather adopts a geometry corresponding to a zeroval ent $\mathrm{Pd}\left(\eta^{2}-\mathrm{H}_{2}\right)\left(\eta^{2-}\right.$ $\mathrm{C}_{2} \mathrm{H}_{4}$) complex (this is due to the preference, mentioned earlier, of PdH_{2} for a molecular dihydrogen complex). The calculations were, as in many Siegbahn's studies of this type, carried out at the MCPF level. The barrier heights for the insertion are given and analyzed with respect to the separated metal hydrides $\mathrm{PdH}, \mathrm{PdHCl}$, or PdHF and ethylene and not with respect to the molecular precursor in which the ethylene is bound to the metal. This was dictated by some simplification for analyzing trends, but the results are therefore more relevant to data in the gas phase than to data in solution. For palladium, relatively low barriers are found, arising from a competition between the d^{10} state of palladium which cannot form the covalent d-bond, which is present in the transition state but has the weakest repulsion with respect to the incoming ligand, and the $\mathrm{d}^{9} \mathrm{~s}^{1}$ state which can form this d-bond but has a greater electron-electron repulsion arising from the s electrons. One again finds a rationalization quite similar to that for the oxidative addition. When a halide ligand is present, the metal will resemble a metal cation with a d ${ }^{9}$ ground-state configuration more, hence the barrier is reduced. The similarity of the barrier heights for the $\mathrm{C}_{2} \mathrm{H}_{4}$ insertion into the $\mathrm{Pd}-\mathrm{H}$ bonds of PdHF and PdHCl is also in line with this argument. ${ }^{403}$ The insertion into the metal -methyl bond of PdCH_{3} is found to be more difficult that the insertion into the metal-hydride bond of PdH , the corresponding barrier with respect to the separated reactants being higher by $13.7 \mathrm{kcal} \mathrm{mol}^{-1}$. As for the oxidative addition of the $\mathrm{C}-\mathrm{H}$ bond, this is due to the increased directionality of the methyl bond. ${ }^{401}$

The calculations that were carried out later by Siegbahn, Zetterberg et al. on the insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the metal-carbon bond of the corresponding cationic $\left[\mathrm{PdCH}_{3}\right]^{+}$and $\left[\mathrm{PdC}_{2} \mathrm{H}_{5}\right]^{+}$systems were done at the DFT-B3LYP level and at the PCI-80 level for a few test calculations. ${ }^{162}$ Thus, one cannot strictly compare the cationic systems to the neutral ones. The results obtained for the cationic systems are summarized in Table 8. We have al ready mentioned that experimentally Ni and Pd cationic complexes were found to be very active for the polymerization of olefins. For the bare metal systems, the π ethylene complex is strongly stabilized, with a binding energy as large as $43.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for $\left[\mathrm{Pd}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$(the

Table 8. Comparative Energy Results (in kcal mol ${ }^{-1}$) for the Insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the $\mathrm{Pd}-\mathrm{C}$ Bond of Cationic Alkyl Palladium Complexes ${ }^{\text {a }}$

system	$\mathrm{C}_{2} \mathrm{H}_{4}$ binding energy ${ }^{\text {b }}$	barrier height ${ }^{\text {c }}$	reaction energy ${ }^{\text {c }}$
$\left[\mathrm{Pd}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$	-43.9	18.3	3.1
$\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$	-27.3	18.0	-7.5
$\left[\mathrm{Pd}\left(\mathrm{HN}(\mathrm{CH})_{2} \mathrm{NH}\right)\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$	-29.8	16.4	-7.0
experiment ${ }^{\text {d }}$		$18.5 \pm 0.1^{\text {e }}$	
$\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$	-36.0	25.1	10.3
$\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$	-14.9	19.3	-7.6
experiment ${ }^{\dagger}$		$19.4 \pm 0.1^{\mathrm{eg}}$	

${ }^{\text {a }}$ At the DFT-B3LYP level; negative values correspond to an exothermic process. ${ }^{\text {b }}$ With respect to the reactants. ${ }^{\text {c }}$ With respect tothe $\mathrm{C}_{2} \mathrm{H}_{4}$ molecular precursor. ${ }^{d}\left[\mathrm{Pd} \text { (phen) }\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$ system, seeref 404 . ${ }^{\mathrm{e}} \Delta \mathrm{G}^{\ddagger}$ valueat $-25^{\circ} \mathrm{C}$. ${ }^{\mathrm{f}}\left[\mathrm{Pd}(\text { phen })\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$ system, see ref 404. ${ }^{9}$ The experimental $\Delta \mathrm{H}^{\ddagger}$ value is $18.5 \pm$ $0.6 \mathrm{kcal} \mathrm{mol}^{-1}$.
corresponding value for $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$is 36.0 kcal mol^{-1}). This large stabilization has been ascribed to a large effect of a charge-induced dipole interaction between Pd^{+}and the highly pol arizable $\mathrm{C}_{2} \mathrm{H}_{4}$ ligand. Due to this strong binding one finds, starting from this π complex, a substantial barrier ($18.3 \mathrm{kcal} \mathrm{mol}^{-1}$ for the methyl migration and $25.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for the ethyl migration) and an endothermic insertion process (by 3.1 and $10.3 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively). This seems to contradict the experiments, especially the computed value of the barrier for the ethyl migration, since in the [(phenanthroline) $\left.\operatorname{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$complex a $\Delta \mathrm{H}^{\ddagger}$ value of $18.5 \mathrm{kcal} \mathrm{mol}^{-1}$ was measured. ${ }^{404}$ In fact, the computed energy barriers and reaction energies vary substantially with the coordination pattern. When two amine ligands are added to give $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$, i.e., a more reasonable model of the experimental system, a barrier of 19.3 kcal mol^{-1} is obtained and the reaction is now exothermic by $7.6 \mathrm{kcal} \mathrm{mol}^{-1}$. The corresponding values for the $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$system are 18.0 and 7.5 kcal mol^{-1}, Table 8. Two factors have been shown to contribute to these changes: (i) a delocalization of the positive charge over the ammonia ligands and (ii) the lack of a β-agostic interaction that was present in $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$due to the coordinative unsaturation. Some changes can also be due to the variation of the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle. We mentioned in the subsection on π-complexes the increase of the binding energy of ethylene on closing the $\mathrm{N}-\mathrm{Pd}-\mathrm{N}$ angle. This increase is not correlated to an increase in the energy barrier, however. In the [$\mathrm{HN}=\mathrm{CH}-\mathrm{CH}=$ $\left.\mathrm{NH}) \mathrm{Pd}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$system, where the chelating diimine has a bite angle of 76°, the binding energy of $\mathrm{C}_{2} \mathrm{H}_{4}$ is increased compared to $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{CH}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$but the insertion barrier is lowered from 18.0 to $16.4 \mathrm{kcal} \mathrm{mol}^{-1}$. The origin of this lowering is traced mainly to a reduced steric repulsion, although the loss of π back-donation (due to the competition between the olefin and the π orbitals of the diimine ligand) and/or the increased charge on palladium may also contribute. ${ }^{162}$ The β-hydride elimination from the alkyl product of the insertion was also investigated and found to be an easy process, thus accounting for the formation of branching products in the polymerization processes.

The same authors have also extended their study of the migratory insertion in [($\mathrm{HN}=\mathrm{CH}-\mathrm{CH}=\mathrm{NH})$ $\left.\mathrm{Pd}(\mathrm{R})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}\right)$ and of the subsequent β-H elimination process to the platinum (and nickel) cases. ${ }^{405}$ When $\mathrm{R}=\mathrm{CH}_{3}$, the barrier for migratory insertion is much higher in the platinum case, 25.5 kcal mol^{-1} instead of $16.4 \mathrm{kcal} \mathrm{mol}^{-1}$ in the nickel case. This accounts for the experimental observation that the platinum system is not effective for polymerization. The subsequent β-H elimination process from the three coordinate [(diimine)M (σ-propyl)] ${ }^{+}$ complex is less endothermic for Pd (with a computed endothermicity of $4.8 \mathrm{kcal} \mathrm{mol}^{-1}$) than for Ni (the computed endothermicity being $11.0 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$). This is in line with the larger extent of branching experimentally found for Pd compared to Ni. ${ }^{396}$ From a computational point of view, it worth mentioning that in this study ${ }^{405}$ no specific transition state could be found for this elimination process (at variance with the previous report of the same authors ${ }^{162}$).
Sakaki and co-workers compared the insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the $\mathrm{Pt}-\mathrm{H}$ bond to the insertion into the $\mathrm{Pt}-\mathrm{SiH}_{3}$ bond for the square-planar $\left[\mathrm{PtH}\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PH}_{3}\right)-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] .{ }^{406}$ The geometries have been optimized at the HF level and the relative energies computed at the MP4SDQ level. From these calculations, insertion into the $\mathrm{Pt}-\mathrm{SiH}_{3}$ bond appears generally to be more difficult than insertion into the $\mathrm{Pt}-\mathrm{H}$ bond. The greater energy barrier found for the insertion into the $\mathrm{Pt}-\mathrm{SiH}_{3}$ bond arises primarily from the 20 kcal mol^{-1} energy difference between the $\mathrm{C}-\mathrm{H}$ bond (which is formed during the insertion into the $\mathrm{Pt}-\mathrm{H}$ bond) and the $\mathrm{C}-\mathrm{Si}$ bond (which is formed during the insertion into the $\mathrm{Pt}-\mathrm{SiH}_{3}$ bond) and from the directionality of SiH_{3} (similar to CH_{3}, vide supra). This can be modulated, however, by other factors such as the respective trans influence of the spectator ligands. For instance, a barrier of only $4.4 \mathrm{kcal} \mathrm{mol}^{-1}$ is computed for the insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the $\mathrm{Pt}-\mathrm{H}$ bond, when SiH_{3} is trans to H ; when PH_{3} is trans to H , the barrier rises to $20.6 \mathrm{kcal} \mathrm{mol}^{-1.406} \mathrm{~A}$ similar trans influence has been found in the pentacoordinate system $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{X})\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$, in which X (either Cl or SnCl_{3}) is trans to the migrating hydrogen atom. ${ }^{407}$ F or the stronger trans-director ligand SnCl_{3}, a much lower barrier is computed, $11.8 \mathrm{kcal} \mathrm{mol}^{-1}$, instead of $33.9 \mathrm{kcal} \mathrm{mol}^{-1}$ for Cl (MP4SDQ//MP2 values). ${ }^{407}$
Coussens, Meier, and co-workers have investigated, via HF, MP2, and DFT calculations and CarParrinello type molecular dynamic simulations, the insertion of $\mathrm{C}_{2} \mathrm{H}_{4}$ into the $\mathrm{Pt}-\mathrm{H}$ bond of cationic [Pt$\left.(\mathrm{H})\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$systems $\left.(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl})\right)^{408}$ Both MP2 and DFT calculations predict a low barrier (between 1.6 and $2.7 \mathrm{kcal}^{2} \mathrm{~mol}^{-1}$) for the $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{PH}_{3}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+} \rightarrow\left[\mathrm{Pt}\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right]^{+}$reaction. Yet the barrier is high enough to prevent the observation of $\mathrm{C}_{2} \mathrm{H}_{4}$ insertion within the 400 fs time span of the mol ecular dynamics simulation. In contrast, the reaction is completed within 100 fs when the phosphine ligand is either PMe_{3} or PCl_{3}. The authors of the paper warn that too much significance should not be put on this difference, since the real experiments take place in solution where the true rate is at least diffusion
limited and most likely affected by the solvent. Yet these studies do indicate that the insertion step is not rate limiting in a multistep process. From a theoretical point of view, one should also note that such calculations pave the way to dynamic simulations in transition-metal chemistry.
More recently, Coussens et al. extended their investigation to the insertion of propene into the $\mathrm{Pt}-\mathrm{H}$ bond of $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{PR}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)\right]^{+} .409$ In this case, the theoretical approach was restricted to quantum mechanical calculations of HF, MP2, or DFT type, using fairly large basis sets. The DFT calculations (using the B3PW91 hybrid exchange correlation functional) seem, on the basis of a comparison with QCISD calculations, to give slightly better results than the MP2 ones. The differences are relatively small, however. From a chemical point of view, the insertion barrier decreases in the order $\mathrm{PH}_{3}(\sim 2-3$ $\left.\mathrm{kcal} \mathrm{mol}^{-1}\right)>\mathrm{PMe}_{3}\left(\sim 1-2 \mathrm{kcal} \mathrm{mol}^{-1}\right)>\mathrm{PF}_{3}(\sim 0.5-1$ $\mathrm{kcal} \mathrm{mol}^{-1}$). In agreement with experimental data, the linear propyl products are favored over the branched one. The energy difference between the two forms decreases in the order $\mathrm{PMe}_{3}>\mathrm{PH}_{3}>\mathrm{PF}_{3}$. The double-bond isomerization of propene has also been investigated. In noncoordinating solvents, the "isopropyl rock" exchange (i.e., the direct exchange of β-hydrogens in the β-agostic isopropyl complex $)^{410,411}$ has been identified. The isomerization pathway occurring via association and dissociation of a solvent mol ecule has been studied, using $\mathrm{CH}_{3} \mathrm{CN}$ as a sol vent molecule, and was found to involve somewhat higher barriers. ${ }^{409}$
The Alkyne Insertion Reaction. There have only been very few studies devoted to this process. We have al ready mentioned the study of the insertion of $\mathrm{C}_{2} \mathrm{H}_{2}$ into the PdCH_{3} bond of the $\left[\mathrm{PdCl}\left(\mathrm{NH}_{3}\right)\left(\mathrm{CH}_{3}\right)-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]$ model system. ${ }^{166}$ The geometries of the intermediates were optimized though a gradient optimization technique at the SCF level; a reaction path was determined at the same level, assuming the $\mathrm{C}_{\mathrm{CH}_{3}}-\mathrm{C}_{\mathrm{C}_{2} \mathrm{H}_{2}}$ distance as the reaction coordinate. Interestingly, the transition state that has been obtained in this way is quite similar to the one obtained by Natatsuji for the insertion of MeOCCH into the $\mathrm{Pd}-\mathrm{H}$ bond of $\left[\mathrm{PdH}\left(\mathrm{PH}_{3}\right)\left(\mathrm{SiH}_{3}\right)(\mathrm{MeOCCH})\right]$ via a gradient geometry optimization. ${ }^{169}$ The energies on the reaction path were recomputed at the CASSCF MRSDCI level. At that level the reaction is exothermic by $22 \mathrm{kcal} \mathrm{mol}^{-1}$ and has a barrier of 17 kcal mol^{-1} to overcome. ${ }^{166}$ It was hypothesized in this article that electron-attracting substituents on the acetylene should lower the energy barrier by lowering the π^{*} orbital. This has been shown to be the case by Nakatsuji and co-workers in their study of the insertion of various alkynes RCCH ($\mathrm{R}=\mathrm{CN}, \mathrm{H}, \mathrm{CH}_{3}$, and OCH_{3}) into either the $\mathrm{Pd}-\mathrm{Si}$ or $\mathrm{Pd}-\mathrm{Sn}$ bond of the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)\left(\mathrm{SnH}_{3}\right)\left(\mathrm{SiH}_{3}\right)(\mathrm{RCCH})\right]$ model system. ${ }^{169}$ The barrier for the insertion into the $\mathrm{Pd}-\mathrm{Si}$ bond, which is governed by donation from the HOMO of the palladium fragment into the LUMO of the alkyne, is lowest when $\mathrm{R}=\mathrm{CN}$, which corresponds to the lowest LUMO of the alkyne. ${ }^{169}$ This study was also aimed at unravelling the electronic and steric factors of the regioselectivity of the silastannation of alkynes

Scheme 3

catal yzed by palladium phosphine complexes, Scheme 3. It was found that for the model catalyst (i.e., with PH_{3} instead of PPh_{3}) insertion into the $\mathrm{Pd}-\mathrm{Sn}$ or $\mathrm{Pd}-$ Si bond always proceeds via the addition of Si or Sn on the unsubstituted carbon atom. Moreover, the addition of Sn is slightly preferable over the addition of Si. This results from the fact that whatever the substituent is, the two most stable transition states for the alkyne insertion are 25a and 25b, 25a being more stable than 25b by $\sim 2-4 \mathrm{kcal} \mathrm{mol}^{-1}$. The

orientation of the alkyne in $\mathbf{2 5}$ a and $\mathbf{2 5 b}$ is governed by the donation of the HOMO of the alkyne (which is always polarized on the terminal carbon atom) into the vacant p orbital localized on Sn or Si . That the reaction should proceed via transition-state 25a explains the regioselectivity observed for path B of Scheme 3 but not the regioselectivity observed for path A. However, a geometry optimization of transi-tion-state 25a with PPh_{3} instead of PH_{3} yields a stabilization of $12.6 \mathrm{kcal} \mathrm{mol}^{-1}$ when the alkyne is rotated by 180°, thus accounting for path A when Pd$\left(\mathrm{PPh}_{3}\right)_{4}$ is used as a catalyst. ${ }^{169}$
Sakaki and co-workers have extended their comparative study of the $\mathrm{C}_{2} \mathrm{H}_{4}$ insertion into the $\mathrm{Pt}-\mathrm{H}$ bond and into the $\mathrm{Pt}-\mathrm{SiH}_{3}$ bond of $\left[\mathrm{Pt}(\mathrm{H})\left(\mathrm{SiH}_{3}\right)\left(\mathrm{PH}_{3}\right)-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ to the $\mathrm{C}_{2} \mathrm{H}_{2}$ case. ${ }^{171}$ Similar results are found, the insertion into the $\mathrm{Pt}-\mathrm{H}$ bond proceeding with a much lower barrier than the insertion into the Pt-$\mathrm{Si}-\mathrm{H}_{3}$ bond (12.8 instead of $20.9 \mathrm{kcal} \mathrm{mol}^{-1}$). A comparison between the ethylene and the acetylene cases, using a vibronic coupling model, is made.
The CO Insertion Reaction and Other Insertion Reactions. Most of the studies that have been carried out since 1990 have focused on the interplay between the CO insertion step itself and the steps that take place immediately before and/or after the insertion, i.e., the steps that involve a rearrangement of the coordination sphere via ligand substitution reactions or isomerization reactions. ${ }^{412-415}$ One should nevertheless mention the study of Blomberg et al. of

CO insertion into metal-hydrogen and metal -methyl bonds for the bare second-row transition metals, including palladium. ${ }^{466}$ As for the ethylene insertion that was reviewed above, the barrier heights (which have been obtained via MCPF calculations) are analyzed with respect to the separated $\mathrm{PdH}, \mathrm{PdCH}_{3}$, and CO and not with respect to the $[\mathrm{Pd}(\mathrm{CO}) \mathrm{H}]$ or $[\mathrm{Pd}$ (CO)(CH3)] molecular complex in which the CO is bound to the metal. In the absence of additional ligands, these insertion reactions proceed directly, without prior binding of CO to the metal. The inserted products $\mathrm{Pd}(\mathrm{COH})$ and $\mathrm{Pd}\left(\mathrm{COCH}_{3}\right)$ are more stable than the separated reactants by 4.9 and 10.9 $\mathrm{kcal} \mathrm{mol}^{-1}$, respectively, but less stable than the [Pd $(\mathrm{CO}) \mathrm{H}]$ and $\left[\mathrm{Pd}(\mathrm{CO})\left(\mathrm{CH}_{3}\right)\right]$ molecular complexes by 25.6 and $33.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The corresponding barriers from the separated reactants are 7.7 and $13.5 \mathrm{kcal} \mathrm{mol}^{-1}$. The larger barrier in the methyl case is ascribed, as for the oxidative addition and the ethylene insertion, vide supra, to the greater directionality of the metal-alkyl bond. Thus, the CO insertion into the metal -methyl bond appears to be favored thermodynamically but not kinetically. It is also argued, using similar arguments to those used for the ethylene insertion, that adding covalent ligands that increase the oxidation state should further favor the insertion into metal-hydride bond compared to metal-alkyl bond. ${ }^{416}$

Indeed, a calculation of K oga and Morokuma finds that at the MP2//HF level the CO insertion into the $\mathrm{Pd}-\mathrm{CH}_{3}$ bond of $\left[\mathrm{Pd}(\mathrm{H})\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\left(\mathrm{PH}_{3}\right)\right]$ is slightly more difficult than the insertion into the $\mathrm{Pd}-\mathrm{H}$ bond, the respective energy barriers being 10.2 and 7.4 kcal $\mathrm{mol}^{-1.417}$ On the other hand, the endothermicity is greater in the hydride case, 6.7 instead of 4.3 kcal mol^{-1} for methyl. For the insertion into the $\mathrm{Pd}-\mathrm{H}$ bond of $\left[\mathrm{Pd}(\mathrm{H})_{2}(\mathrm{CO})\left(\mathrm{PH}_{3}\right)\right]$, there is no barrier and the reaction is $9.4 \mathrm{kcal} \mathrm{mol}^{-1}$ uphill. Thus, from these calculations the hydride migration may not be as difficult as previously believed. However, as we shall see in the following, CO insertion reactions are rather sensitive to basis set effects. The calculations were carried out with a relatively small basis set and with a large-core pseudopotential. Different conclusions might therefore emerge if a more saturated basis set would be used in conjunction with a small-core pseudopotential.

The above study assumed a square-planar $\mathrm{Pd}(\mathrm{II})$ complex in which CO and either hydride of the alkyl are cis to each other. In many carbonylation reactions, however, CO is not initially bound to the metal and the precursor complex is a complex containing either a terdentate ligand, $\mathbf{2 6}$, or a bidentate ligand and another monodentate ligand, 27. The question

26

27
then arises of the mechanism of the substitution of one metal-ligand bond by a metal-CO bond and of its coupling with the CO insertion. Does it take place

Scheme 4

via a dissociative mechanism, see path i of Scheme 4, where one metal-ligand bond is cleaved, CO comes, and then inserts into the metal-alkyl bond, or as in path ii, does it involve an associative mechanism in which a five-coordinate intermediate is first formed on CO addition, the CO insertion taking place in this five-coordinate intermediate? Or does the five-coordinate intermediate relax to the four-coordinate carbonyl complex prior to insertion, path iii. In the case of a bidentate or terdentate ligand, will a dissociated arm remain in the immediate vicinity of the metal and participate to some extent to the insertion reaction? In the specific case of a bidentate ligand, what is the most reactive pathway, the one involving the dissociation of one arm (especially if the ligand is hemilabile) or the one involving the dissociation of the monodentate ligand?
The first three questions have been addressed for a cationic Pd(II) complex bearing terdentate nitrogendonor ligands in a joint experimental and theoretical study. ${ }^{412}$ The cal culations were carried out on the [Pd$\left.\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{CH}_{3}\right)\right]^{+}+\mathrm{CO}$ model system, using an allelectron valence double ζ basis set. The geometries were optimized at the SCF level. The relative energies were calculated at the SCF and MP2 level, the $\mathrm{Pd}-\mathrm{NH}_{3}$ dissociation step and the CO insertion step also being computed at the CASSCF and CASSCF/ MRSDCI levels. From these calculations the purely dissociative and associative pathways, paths i and ii, can be ruled out. No transition state for the CO insertion having NH_{3} strongly bound to Pd is found. On the other hand, the calculations suggest a path in which after concerted exchange of NH_{3} for CO via a five-coordinate transition state, the amine ligand stays in the vicinity of the Pd coordination sphere and stabilizes the transition state through a loose association. One dissociated arm of the experimental terdentate ligand might play this role. The neutral system in which one NH_{3} ligand was replaced by CH_{3} behaved somewhat similarly. The association of NH_{3} with the systems hardly exists, however. The inser-
tion barrier is also quite similar (15.4 instead of 18.8 $\mathrm{kcal} \mathrm{mol}^{-1}$, in the cationic system, MP2//SCF values). Thus, the greater reactivity experimentally observed in the cationic systems compared to the neutral ones has been tentatively ascribed to a different trans influence of the ligand trans to the migrating methyl. ${ }^{412}$

Very recently, MP2//HF calculations by Groen et al. on the $\left[\mathrm{Pd}\left(\mathrm{HN}=\mathrm{CHCH}_{2} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NH}\right)\left(\mathrm{CH}_{3}\right)\right]^{+}+$ CO model system, where the terdentate ($\mathrm{HN}=$ $\mathrm{CHCH}_{2} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NH}$) ligand was free to dissociate one of its arms, I in Figure 14, do not contradict the previous proposal. ${ }^{415}$ As seen from the HF-optimized geometries of Figure 14, the CO insertion into the Pd-methyl bond takes place in a four-coordinate complex (see the sequence III $\rightarrow \mathbf{I V}$ (TS) $\rightarrow \mathbf{V}$ of Figure 14) having a dissociated arm in the vicinity of palladium. Definite conclusions regarding the step prior to insertion, viz. the CO incorporation I \rightarrow II(TS) \rightarrow III, Figure 14, could not be drawn from these MP2//HF calculations. At the HF level, a small barrier ($3 \mathrm{kcal} \mathrm{mol}^{-1}$) is found, but it disappears when the energies are computed at the MP2 level. The MP2//HF insertion barrier, computed with an allelectron basis and a valence double ζ basis set, is 11.5 $\mathrm{kcal} \mathrm{mol}^{-1}$. Interestingly, a calculation done in the samestudy with the ($\mathrm{HN}=\mathrm{CHCH}_{2} \mathrm{~N}=\mathrm{CH}_{2}$) bidentate model ligand yields a somewhat higher value of 14.1 kcal mol ${ }^{-1.415}$ The DFT-B3LYP calculations of Morokuma et al. carried out with the ($\mathrm{HN}=\mathrm{CHCH}=\mathrm{NH}$) diimine ligand yield a comparable value, 15.0 kcal $\mathrm{mol}^{-1.418}$ Groen et al. ascribe their lower value in the case of the terdentate ligand to some steric effect and not to the presence of the dissociated arm. ${ }^{415}$

Yates and co-workers have performed, al so in close connection with experimental investigations, a very comprehensive study of the carbonylation mechanism of the neutral $\left[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCOO})\left(\mathrm{PH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right]$ system, 28, taken as a model of palladium-alkyl complexes of picolinic acid derivatives 29 that have been shown to undergo rapid carbonylation. ${ }^{413,414}$ Quite Iarge

Figure 14. Computed reaction pathway (at the SCF level) for the reaction $\left[\mathrm{Pd}\left(\mathrm{HN}=\mathrm{CHCH}_{2} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NH}\right)\left(\mathrm{CH}_{3}\right)\right]^{+}+$ $\mathrm{CO} \rightarrow\left[\mathrm{Pd}\left(\mathrm{HN}=\mathrm{CHCH}_{2} \mathrm{~N}=\mathrm{CHCH}=\mathrm{NH}\right)\left(\mathrm{COCH}_{3}\right)\right]^{+}$. (Reprinted with permission from ref 415.) Copyright 1998.
basis sets were used for computing the energies at the MP2 level on geometries optimized either at the DFT-BLYP level or at the MP2 level. Both the cis(N, P) and trans-(N, P) isomers have been considered. The calculations show that the dissociation of PH_{3} is unlikely and that upon CO approach from 28, a

28

29
five-coordinate square-pyramidal $[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCOO})$ $\left(\mathrm{PH}_{3}\right)\left(\mathrm{CH}_{3}\right)(\mathrm{CO})$] intermediate, with the nitrogen atom at the apex of the palladium atom, is formed after some rearrangement, 30. According to the BLYP and MP2 calculations, the nitrogen atom is more strongly bound in 30 than in the neutral [Pd$\left.\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})\right]$ system ${ }^{412}$ (vide supra), the computed $\mathrm{Pd}-\mathrm{N}$ bond distance being much shorter, 2.722 \AA at the BLYP level, $2.351 \AA$ at the MP2 level, and $3.11 \AA$ at the SCF level in the $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{CO})\right]$ system. Yates et al. ascribe this feature to some increased π back-donating ability or to the inclusion of correlation effects. But one may wonder whether the chelating nature of the ligand is also not of importance for keeping N closer to Pd. Yates et al.
then considered various pathways for the CO insertion starting either from 30, 31, 32, or 33. The most

favorable is, as in the cationic system analyzed by Markies et al., ${ }^{412}$ the one starting from 30, in which the donor nitrogen is weakly bound. Quite notewor-
thy, this result was found to be rather sensitive to the quality of the basis set. At the best level of calculation the computed barrier is $14 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. Note that in the pathway starting from 31, the imine and the carbonyl groups of the bidentate ligand exchange their role. In a very recent article, Yates et al. allude to calculations performed on a cationic anal ogue, ${ }^{419}$ where the bidentate ligand is the neutral ($\mathrm{HN}=\mathrm{CHCHO}$) model ligand instead of the anionic ($\mathrm{HN}=\mathrm{CHCOO})^{-}$ligand used before. A similar mechanism seems to operate, one difference being that in the five-coordinate $\left[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCHO})\left(\mathrm{PH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right.$ (CO)] ${ }^{+}$intermediate the O atom is now at the apex of palladium, instead of N in the neutral system. One can think that this is due to a stronger electrostatic interaction of oxygen in the cationic system.

To close this section, one should also mention a study of the insertion of SnCl_{2} into the $\mathrm{Pt}-\mathrm{Cl}$ bond of cis- $\left[\mathrm{Pt}(\mathrm{Cl})_{2}\left(\mathrm{PH}_{3}\right)_{2}\right]^{420}$ The geometries of the separated reactants, transition state, and products (cis and trans) were optimized at the HF level and their energies recomputed at the MP2 level. These energy calculations point to an exothermic reaction and to the absence of an energy barrier from the reactants. One should perhaps wait until a DFT or a MP2 geometry optimization has been performed to assess this feature definitively. Moreover, it should be stressed that no determination of a molecular precursor adduct is reported in this study.

3. Nucleophilic Attack on a Coordinated Ligand

Nucleophilic Attack on the Allyl Ligand. The nucleophilic attack on an allyl ligand is a key step of many transformations of organic compounds catalyzed or mediated by allyl palladium complexes. ${ }^{8}$ This is, for instance, the case in allylic substitution reactions, ${ }^{421-426}$ bis-oxidation of conjugated dienes, $, 427,428$ isomerization of allylic compounds, etc. These reactions are also characterized by some regio- and/or stereosel ectivity induced by either the ligands on the metal or the substituents on the allyl ligand. Much work has been done to unravel these mechanistic issues, which could be also more complicated due to the possible interference of the $\eta^{3} \leftrightarrow \eta^{1}$ interconversion. ${ }^{1,429}$ Thus, the theoretical work that has been carried out on allyl complexes since 1990 has mostly dealt with a deeper understanding of their reactivity aspects.

Some of these aspects, however, rely on a precise assessment of the ground-state properties of the π-allyl complexes. Thus, in a collaborative effort, Norrby, Åkermark, Blomberg, and co-workers have developed molecular mechanics parameters ${ }^{430}$ that allow the calculation of systems with quite large and complex ligands on the palladium atom as with substituents on the allyl ligand. ${ }^{431,432}$ To this end, MCPF calculations (using the same computational recipe as for the naked palladium ligand systems, vide supra) have been carried out on the [$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ Pd] ${ }^{+}$system. From this study the binding appears as being quite covalent between a Pd^{+}cation in its $d^{9}{ }^{2} \mathrm{D}$ ground state and an allyl radical, one indicator being the electronic population of Pd that remains close to 9 . The covalent interaction takes place

Figure 15. Schematic molecular orbital interaction diagram between the valence orbitals of the allyl ligand and the metal orbitals of appropriate symmetry.
between the nonbonding π orbital of the allyl radical and the metal d_{π} orbital of appropriate symmetry. There is also some donative interaction between the doubly occupied π orbital of the allyl and the empty $5 s$ and 5 p orbitals on palladium. Calculations also performed on $\left[\mathrm{Cl}_{2} \mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{-}$and $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Pd}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+}$show that this bonding pattern, schematically drawn in Figure 15, is retained in the bis-ligated system. ${ }^{430}$ It is also rather similar to the previous ones that were based on extended Hückel calculations. ${ }^{433-436}$ The covalent nature of the bonding which is emphasized here appears most clearly from the topological charge density analysis ${ }^{157,158}$ made by Szabo on the MP2 wave functions of several $\left[L_{2} \mathrm{Pd}\right.$ -$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$] systems ($\mathrm{L}=$ none, $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{NH}_{3}, \mathrm{CH}_{2}=$ $\left.\left.\mathrm{CH}_{2}, \mathrm{PH}_{3}\right)\right)^{437}$ Critical points characteristic of covalent bonding have been found between Pd and the three carbon atoms. That the $\mathrm{Pd}-\mathrm{C}$ bond is described in terms of a covalent bond is quite important since ligands that enforce this covalent type of binding will strengthen the $\mathrm{Pd}-\mathrm{C}$ bond and make it therefore less prone to being cleaved on addition of a nucleophile. Indeed, the cal culations (also carried out at the MP4 level) show that F, Cl, and NH_{3} (considered by Szabo as pure σ-donor ligands) strengthen these palladiumcarbon bonds and weaken the $\mathrm{C}-\mathrm{C}$ allyl bonds whereas the opposite effect is found for the π acceptors $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ and PH_{3} (the phosphine being considered by Szabo as a π acceptor, see however our previous discussion). On the basis of these arguments it can be easily understood why, for instance, π acceptors activate the complex toward nucleophilic addition. ${ }^{437}$
A similar pattern was found by Sakaki et al. ${ }^{274}$ In addition, these authors discuss the origin of the large di hedral angle of $110-125^{\circ}$ between the π-allyl plane and the PdL_{2} plane and of the downward shift of the

Scheme 5a

(A) $\psi\left(\pi-d_{x} \cdot-\bar{z}\right)$

$\theta>90^{\circ}$
(B) $\psi\left(\mathbf{n} \pi-\mathrm{d}_{\mathrm{x}}\right)$
a Reprinted with permission from ref 274.
π-allyl skeleton below the PdL_{2} plane. The large dihedral angle is due to a repulsive interactionwhich is not accounted for in the picture of either Norrby et al. ${ }^{430}$ or Szabo ${ }^{437 \text {-between a doubly oc- }}$ cupied d_{σ} orbital and the π orbital. To weaken this interaction, which is shown by the lower broken line in Figure 15, the π-allyl ligand tilts, making a dihedral angle of $>90^{\circ}$. However, since this tilting would al so weaken the attractive covalent interaction between n_{π} and d_{π}, the allyl ligand shifts downward, Scheme $5 .{ }^{274}$

A comparison between Pd and Pt has been made by Sakaki et al. ${ }^{438}$ in the case of the $\left[\mathrm{M}(\mathrm{H})\left(\mathrm{PH}_{3}\right)\right.$ $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$] systems ($\mathrm{M}=\mathrm{Pd}$, Pt). Both display the same geometry, i.e., an asymmetric bonding due the large trans effect of the hydride ligand. The asymmetry is greater for Pd compared to Pt . The $\mathrm{M}-\mathrm{P}$ and $\mathrm{M}-\mathrm{C}$ bonds are slightly shorter for Pt (except the M-C bond trans to phosphorus). The interconversion between the $\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}$ and the $\eta^{1}-\mathrm{C}_{3} \mathrm{H}_{5}$ isomer has been also considered. The η^{3} isomer is found much more stable than the η^{1} isomer: when electron correlation is included, e.g., at the MP4SDQ level, the energy difference amounts to $8.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for Pd and 13.0 $\mathrm{kcal} \mathrm{mol}^{-1}$ for Pt. The addition of an extra phosphine ligand lowers this value to $3.1 \mathrm{kcal} \mathrm{mol}^{-1}$ in the case of $\left[\mathrm{Pd}(\mathrm{H})\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]$. It even leads to a reversal in the stability order for Pt, since the η^{1} isomer of [Pt(H) $\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$] is found to be more stable than the η^{3} isomer by $8.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Although Sakaki et al. do not comment on this point, one may speculate that this reversal is due to the greater covalent bonding between the metal and the cis ligands H and $\eta^{1}-\mathrm{C}_{3} \mathrm{H}_{5}$ in Pt compared to Pd.
In the bonding pattern of Figure 15, the π^{*} orbital of the ligand is high in energy, above the $\mathrm{n}_{\pi}-\mathrm{d}_{\pi}$ antibonding combination that is generally considered as being the LUMO. That this $\mathrm{n}_{\pi}-\mathrm{d}_{\pi}$ orbital is the LUMO is often used as a rationale to account for the fact that the nucleophilic addition usually takes place on a terminal carbon atom. However, as elegantly explained by Carfagna et al., ${ }^{439}$ the situation is not as clear-cut as it seems. The bending and the shift of the allylic ligand that we mentioned above brings the anti hydrogen atoms (or substituents) rather close
to the metal, thus raising some repulsive interactions. To relieve these interactions, the CH_{2} groups distort: the anti hydrogens deviate from the allyl plane away from it (by 30° or more) whereas the syn hydrogens are pinned toward it. The consequence of this distortion, which is seen both in crystal structures ${ }^{440}$ and in the optimized geometries ${ }^{437,441,442}$ and which can be viewed as a disrotatory-like movement of the CH_{2} groups, is dual: first there is a stronger interaction between d_{π} and n_{π}, which destabilizes the antibonding $\mathrm{n}_{\pi}-\mathrm{d}_{\pi}$ combination. Concomitantly, the π^{*} orbital is stabilized, because of a reduced overlap between the porbitals on the carbon atoms. As a result, the two levels come close to each other, much closer than one might have expected on reasoning with a planar allyl ligand, and the probability of a nucleophilic attack on the central carbon atom (the one with the greatest lobe in π^{*}) is increased. ${ }^{439}$ In fact, further calculations of Szabo, combined with an experimental investigation, have shown that a proper choice of the ancillary ligands can indeed orient the nucleophilic addition toward the central carbon atom. ${ }^{443,444} \mathrm{~A}$ bidentate σ-donor ligand such as TMEDA raises the d_{π} orbital to such an extent that the π^{*} orbital is below $\mathrm{n}_{\pi}-\mathrm{d}_{\pi}$ and becomes the LUMO, hence favoring attack at the central carbon atom. On the other hand, a π-acceptor ligand, such as $\mathrm{CH}_{2}=$ CH_{2}, favors the attack on the terminal carbon atoms. These calculations, carried out at the MP2 level, were corroborated by the experimental observations. ${ }^{433,444}$

Ward used EH calculations in an attempt to rationalize the observed regioselectivity of the nudeophilic attack on [Pd(allyl)(phosphine)(imine)] complexes. ${ }^{445}$ With PH_{3} and either $\mathrm{NH}_{2}{ }^{-}$or $\mathrm{H}_{2} \mathrm{C}=\mathrm{NH}_{2}$ as a model of the phosphine and the imine, respectively, he finds (at variance with the ab initio calculations) a rather strong invol vement of the allyl π^{*} orbital in the orbital mixing pattern. According to his calculations, this π^{*} orbital mixes into the $\mathrm{d}_{\pi}-$ n_{π} combination and polarizes it on the carbon atom trans to the phosphine ligand, 34. One therefore

expects that the nucleophilic addition will take place on this carbon atom, as experimentally found and as rationalized by Szabo on the basis of covalency arguments. ${ }^{437}$ One should point out, however, that the phase relationship for the mixing in 34 results from the fact that in the d_{π} orbital of the Pd (phosphine)(imine) fragment, which is the LUMO of this fragment, the lobe trans to the imine atom is greater than the lobe trans to the phosphorus atom due to the greater σ-donor strength of the imine.

Scheme 6

Thus, one intuitively expects the $\mathrm{Pd}-\mathrm{C}$ bond trans to the imine to be stronger and is therefore brought back to Szabo's type of arguments.

Szabo has extended the scope of his investigations to analysis of the effects of β substituents and to their interrelation with the effects of the andillary ligands. ${ }^{441}$ The calculations, of MP2 and MP4SDQ type with a small-core pseudopotential, were carried out on a whole series of systems, viz. [PdL $\left.2\left(\mathrm{CH}_{2} \mathrm{CHCHCH}_{2} \mathrm{X}\right)\right]$ ($\mathrm{L}=\mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{PH}_{3} ; \mathrm{X}=\mathrm{Cl}, \mathrm{OCH}_{3}, \mathrm{H}$) where $\mathrm{CH}_{2} \mathrm{X}$ takes a syn or an anti position. Consideration of both configurations allowed one to compare reactions occurring in cyclic (η^{3}-allyl) palladium where the anti position is imposed to reactions occurring in acyclic systems where the syn position is also possible. The major result of this study is the characterization of a new type of interaction between the β substituent and the palladium atom. More precisely, both the inplane d_{π} orbital and a lower d orbital can interact in a bonding way with the $\sigma^{*}{ }_{c-x}$ orbital, Scheme 6. This interaction makes the allylic system similar to a butadiene complex, either cis or trans according to the anti or syn configuration of the allyl, Scheme 6. The result is a deactivation of the more substituted carbon atom and an activation of the less substituted one toward nucleophilic addition. The stronger the σ-donor capability of the ligand, the more regioselective the reaction is. We have seen, however, that the nucleophilic addition is activated by ligands that are either poor σ donors or π acceptors. Thus, a compromise has to be found between the β substituent effects and the activating effects of the ancillary ligands. The best compromise is to use bidentate ligands with a σ donor trans to the substituted allylic termini. Calculations performed later at the DFTB3PW91 level yielded very similar results both for the geometries and for the energies. ${ }^{42}$

These calculations were in fact part of a combined experimental and theoretical investigation, aimed at testing the theoretical proposal. ${ }^{442}$ They were per-
formed on complexes bearing a β-methoxy-substituted cydic allyl ligand, such as η^{3}-cyclohexenyl, η^{3} cycloheptenyl, and η^{3}-cycl ooctenyl. The experiment, which was based on comparison of the rates of the deuteriomethanol ysis of the various cyclic complexes, unambiguously showed the validity of the theoretical proposal. A careful analysis of the geometrical features confirmed that a strict antiperiplanar conformation of the $\mathrm{Pd}-\mathrm{C}_{3}$ and $\mathrm{C}_{4}-\mathrm{O}$ bond is necessary to maximize the strength of the β-substituent effects. Extension to the β-acetoxy-substituted (η^{3}-cyclohexenyl)palladium complexes with the acetoxy substituent in either the anti or syn position yielded similar conclusions. ${ }^{446}$
One should notice that the theoretical investigations of Szabo pertaining to the trans nucleophilic addition, i.e., the addition of an external nucleophile, do not include a transition-state determination. His conclusions rely only on the combination of computed ground-state properties with experimental observations. Thus, the determination of such a transition state by Blöchl and Togni, ${ }^{447}$ using Blöchl's methodology ${ }^{448}$ based on first-principle molecular dynamics within the projector augmented wave method, ${ }^{449}$ is of major interest. The calculations were first carried out for the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)(\right.$ pyrazole $\left.)\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]+\mathrm{NH}_{3}$ reaction. The optimized structure of the reactants, transition state, and product are shown in Figure 16. In the $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)\left(\right.\right.$ pyrazole e) $\left.\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]$ reactant, the $\mathrm{Pd}-\mathrm{C}$ bond trans to N is shorter than the bond trans to P by $0.035 \AA$, a feature explained by Blöchl and Togni as resulting from the greater trans influence of the phosphine. However, it also corresponds to a stronger σ covalent bond, as discussed by Szabo (vide supra). The attack was studied for the two terminal positions. The transition state for the attack trans to the pyrazole is $1.9 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ higher in energy than the one for the attack trans to the phosphine, the activation energies being 11.9 and $10.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The influence of the steric effects and its interplay with the electronic effects have also been investigated on one of the systems used in the experiments, ${ }^{450} 35$. The simulations indicate that

although both electronic and steric effects are at work, the site selectivity is dominated by steric effects that force the allyl ligand to rotate out of the $\mathrm{P}-\mathrm{Pd}-\mathrm{N}$ plane. ${ }^{447}$
The comparison between the attack of the neutral nucleophile NH_{3} and the attack of anionic nucleophiles such as F^{-}and CN^{-}has now been done for

allyl complex

transition state

olefin complex

Figure 16. Optimized reactants, transition state and product for the nucleophilic addition of NH_{3} on the allyl ligand of the $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)($ pyrazol $)($ allyl) model system. (Reprinted with permission from ref 447.) Copyright 1996 American Chemical Society.
the $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2}\left(\eta^{3}\right.\right.$-allyl) $)$ system. ${ }^{451}$ These two nucleophiles were taken as models of an electronegative anion and a stabilized carbon anion, respectively. Since the gas-phase reaction of anionic nucleophiles appears to be barrierless, the study was performed with a continuum solvation model, either the PCM/ DIR ${ }^{452}$ or SM 2 model 453 for water solvation. Dichloromethane was also used as a solvent in the PCM/ DIR solvation model. The results rely on DFT-B3LYP calculations carried out with a polarized valence double ζ basis set and a small-core pseudopotential, except in the case of the SM2 solvation model which uses semiempirical AM1 wave functions. The transi-tion-state determination was not based on gradient calculations but used a two-dimensional potential energy surface fit. It should be pointed out, however, that calibration calculations for the gas-phase [Pd-$\left(\mathrm{NH}_{3}\right)_{2}\left(\eta^{3}\right.$-allyl)] $+\mathrm{NH}_{3}$ reaction yielded a good agree ment between the transition-state geometry obtained via a gradient determination and the transition-state geometry obtained via the two-dimensional fit. The agreement with the transition state geometry determined by Blöchl and Togni (vide supra) was also quite satisfactory. The results of the calculations in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ show an increase in the reaction barriers in the order $\mathrm{CN}^{-}>\mathrm{NH}_{3}>\mathrm{F}^{-}$, from 6.9 to 17.2 kcal mol^{-1}, the value for NH_{3} being $7.9 \mathrm{kcal} \mathrm{mol}^{-1}$. Note that the corresponding gas-phase value is 2.1 kcal mol^{-1}. Thus, solvation leads to an increase of the reaction barrier, as expected from the charge delocalization and the increase of the cavitation work in the transition state. The PCM/DIR solvation model yields results that are more satisfactory than the SM2 ones, essentially because of the lack of parameters for palladium sol vation in the latter case. Thus, the solvation energies within the SM2 model were obtained from consideration of the allyl cationnucleophile system, without the $\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{2}$ moiety.

Szabo very recently investigated the cis migration of the coordinated chloride ligand to the η^{3}-allyl ligand in the $\left[\mathrm{PdCl}(\mathrm{BQ})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]$ system ($\mathrm{BQ}=$ p-benzoquinone, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$), Scheme 7.454 Such a reaction can also be viewed as a reductive elimination, since one goes from $\operatorname{Pd}(I I)$ to $\operatorname{Pd}(0)$. It takes place experimentally in some catalytic transformation where benzoquinone is usually used as a cocatalyst to activate the η^{3}-allyl intermediate toward nucleophilic attack and to regenerate a $\mathrm{Pd}(\mathrm{II})$ complex in order to maintain a catalytic cycle. The calculations were carried out at the DFT-B3PW91 level, with a rela-

Figure 17. Transition state for the cis migration of Cl to the η^{3}-allyl ligand (left) and for the cis migration of H (right) in η^{3}-allyl Pd complexes. (Reprinted with permission from refs 454 and 438. Copyright 1998 and 1996 American Chemical Society).

Scheme 7

tivistic small-core pseudopotential for Pd^{68} and a polarized basis set on the heavy atoms of the ligands. The effects of substitution of the benzoquinone on the Cl migratory aptitude were al so studied by considering F, Cl, and CN as substituents. The cyclohexenyl was taken as a test for substitution on the allyl. The reactants, transition states, and products were fully optimized. The calculations showed that the steric effects induced by the η^{2} coordination of the benzoquinone ligand facilitate the displacement of Cl toward the allyl ligand. The reaction in the unsubstituted system is slightly endothermic, by 2.5 kcal mol^{-1}, the barrier at the transition state amounting to $15 \mathrm{kcal} \mathrm{mol}^{-1}$. The geometry of the transition state shown at the left of Figure 17 is characterized by a strong elongation of the $\mathrm{Pd}-\mathrm{C}$ bond which is cis to Cl, from $2.16 \AA$ in the reactant to $2.54 \AA$ in the transition state. The fact that this is most likely due to the necessity for the relatively large Cl atom to maximize its interactions is best seen from the comparison with the structure of the transition state obtained by Sakaki et al. 438 for the reductive elimination process $\left[\mathrm{Pd}(\mathrm{H})\left(\mathrm{PH}_{3}\right)\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right] \rightarrow\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)\left(\eta^{1-}\right.\right.$ $\mathrm{C}_{3} \mathrm{H}_{6}$)], Figure 17, right. In this process, which corresponds to a cis migration of H toward the allyl ligand instead of the cis migration of Cl , it is the $\mathrm{Pd}-\mathrm{C}$ bond trans to H which is elongated (from 2.47
\AA in the reactant to $2.60 \AA$ in the transition state). The substitution effects are as expected from the previous studies: electron-withdrawing substituents lower the energy barrier, down to $\sim 10 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$ for the two CN's of 5,6-dicyanobenzoquinone (DDQ), which is also not too bulky. Alkyl substituents on the allyl can further decrease this value to $6.5 \mathrm{kcal} \mathrm{mol}^{-1}$. These results have also been verified by experimental studies. ${ }^{454}$

Nucleophilic Addition on a Coordinated Olefin. This reaction is also very important in organometallic chemistry and in homogeneous catalysis. ${ }^{455}$ It is, in particular, the first step of the catalytic cycle of the Wacker process. ${ }^{456,457}$ Recently there has been a review of the theoretical studies pertaining to this topic. ${ }^{458} \mathrm{In}$ an attempt to get a detailed understanding of all steps involved in the process, Siegbahn first concentrated on the nucleophilic addition step. The reaction energy obtained from the gas-phase model reaction $\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]+\mathrm{OH}^{-} \rightarrow\left[\mathrm{PdCl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}\right)\right]^{-}$ is not realistic, the computed exothermicity amounting to $77.8 \mathrm{kcal} \mathrm{mol}^{-1}$ according to the DFT-B3LYP calculations. ${ }^{459}$ Self-consistent reaction field (SCRF) calculations (at the DFT-B3LYP level, using a spherical cavity and restricting the multi pole expansion to the quadrupole moment) take into account the bulk dielectric properties of the surrounding water and reduce this value, but only to $54.6 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus, to get a realistic model, it is necessary to describe the nucleophile by a chain of water molecules (at least three) held by hydrogen bonds. ${ }^{460}$ This chain can bridge the negative chloride ion and the point of attack of the olefin, 36 for the structure of the transition state of the nucleophilic attack (reproduced

with permission from ref 460). Without inclusion of the bulk dielectric effects, this model yields an endothermic reaction, but on inclusion of these effects via SCRF calculations, a slight exothermicity is found, $4.5 \mathrm{kcal} \mathrm{mol}^{-1}$ with a large basis set including several polarization functions on both the ligands and the palladium. ${ }^{460}$ This clearly shows the important role played by short-range and long-range effects. A small barrier ($5.7 \mathrm{kcal} \mathrm{mol}^{-1}$) is computed. This outside nucleophilic addition (which corresponds to a trans stereochemistry for the attack) is also found to be more exothermic than the cis attack (i.e., a cis migration from a hydroxide coordinated on pal-
ladium). All these features agree with the known experimental data on this process.
The mechanism of palladium-catalyzed cycloaddition reactions of methylenecyclopropane with olefins, as well as those of oxatrimethylenemethane (OTMM) and azatrimethylenemethane (ATMM) with olefins, have been investigated with HF and MP2 calculations. ${ }^{461}$ The geometries were determined at the HF level and the energies recomputed at the MP2 level. The calculations have been carried out on the $\left[\mathrm{Pd}\left(\eta^{2}\right.\right.$-methylenecyclopropane $\left.)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PH}_{3}\right)\right],\left[\mathrm{Pd}\left(\eta^{3}-\right.\right.$ OTMM $\left.)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PH}_{3}\right)\right]$, and $\left[\mathrm{Pd}\left(\eta^{3}\right.\right.$-ATMM $\left.)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PH}_{3}\right)\right]$ model systems, assuming that the coupling is intramolecular. They show that the first step of the reaction has a transition state which involves the coupling of a π-allyl ligand (acting as a nucleophile) with the ethylene ligand. The energy barriers for this coupling are $26.4,28.8$, and $26.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively (MP2//HF values), thus underlining a similar behavior for the three systems. The preference for the [$2+1]$ cycl oaddition over the [3+2] cycloaddition observed in the products of the reaction for the heteroatom-substituted species is found to arise from the subsequent demetalation step: in the heteroatom case, this step involves a prototropic shift before the reductive elimination. ${ }^{461}$

4. Ligand Substitution Reactions

Ligand substitution reactions form an important class of reactions of square-planar $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ complexes. ${ }^{462}$ There have been, in the past, several empirical or semiempirical studies of such processes which have been reviewed. 458,463 These studies gave some information about the σ and π electronic effects of the ligands and about the trans effect as well. Since then, few ab initio studies have been carried out to rationalize, on more quantitative grounds, the trans effect, the rel ative ease of the associative mechanism, and the dissociative mechanism and also to provide data for determination of analytical potential energy functions that can be used in further dynamic simulations.

Lin and Hall have determined, through a gradient geometry optimization, the geometry of the transition states for the associative pathway in substitution reactions on Pt and Rh complexes. ${ }^{464}$ For platinum, the self-exchange of NH_{3} in trans-[$\left.\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)\right]$, trans- $\left[\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)\right]$, and cis- $\left[\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{NH}_{3}\right)_{2}\right]$ was investigated. The cal culations were carried out at the HF level with large-core pseudopotentials and a valence double- ζ basis set (a test calculation done at the GVB level showed that the HF level was a reasonable approximation). Since in these exchange reactions the entering and leaving groups were identical, the five-coordinate transition-state optimization could be done via a constrained energy minimization (this assumes that there is no intermediate). The corresponding geometries are shown in Figure 18 together with the corresponding SCF energy barriers. They point to a kinetic trans effect along the series $\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CO}>\mathrm{H}>\mathrm{Cl}$ in good agreement with the experimental order. Assuming the $\mathrm{Pt}-\mathrm{N}$ distance as the reaction coordinate, a reaction path was computed and analyzed via a plot of the Lapla-

$+8.70$

Figure 18. Geometries of the transition states for the trans- $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)+\mathrm{NH}_{3}$ substitution reaction, the trans- $\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)+\mathrm{NH}_{3}$ substitution reaction, and the two possible courses of the cis-Pt(H)Cl(NH3)2 $+\mathrm{NH}_{3}$ substitution reaction.
cian of the total electron density $-\nabla^{2} \rho .{ }^{158}$ This analysis clearly shows that in the early stages of the reaction, the attack occurs at the apex of the square plane, the electron pair of the entering ligand using the empty p_{z} orbital. On further approach, the incoming ligand experiences el ectron-el ectron repulsion from the occupied d orbitals. To relieve part of this repulsion, it shifts away from the trans directing ligand and at the same time the leaving ligand is pushed down, this concomitant movement leading to the pseudo-trigonal-bipyramidal structure of the transition state. The trigonal-bipyramid-like (TBP) geometry of this transition state is characterized by a rather small angle (less than 90°) between the entering and leaving ligands in the equatorial plane and by correspondingly long metal-ligand bonds. This is traced to minimization of the repulsion between the d orbitals on the metal and the electron pairs on the entering and leaving ligands. This minimization is in turn related to both the σ and π properties of the trans directing ligand.
The more recent DFT study of Deeth and Elding of the water exchange on $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+},\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$, and trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ also points to the bond stretching of the equatorial bonds in the TBP structure of the transition state for the associative mechanism. ${ }^{465}$ The geometries were optimized at the LDA level, including spin-free relativistic corrections. For such systems that are essentially noncovalent, nonlocal corrections are found to somewhat deteriorate the results, the optimized geometries as well as the relative energies. On the other hand, solvation effects from the water molecules of the bulk need to be included in order to get meaningful results for the cationic systems. It turns out that the differential effects between the reactants and the transition state are well accounted for by the Born solvation model. Their contribution to the activation enthal py for the water exchange at $\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ is $+17.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the associative mechanism and $-15.8 \mathrm{kcal} \mathrm{mol}^{-1}$ for the dissociative exchange. Once these effects are included, the agreement between the computed activation energies and the experimental ones is very good. The dissociative and associative mechanism have been compared. In line with the known experimental data, the dissociative mechanism can be ruled
out, the corresponding dissociation energy being much too high. Another interesting conclusion that emerges from this work is that the stretching of the equatorial bonds, as well as the release of solvent molecules in the transition state, counteracts the decrease in molar volume caused by the association of the entering water molecule into the inner coordination sphere, thus explaining the small volumes of activation observed experimentally.

A five-coordinate TBP-like geometry of the transition state has also been found by Morokuma and coworkers in their study of the water replacement reaction $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{Cl}^{-} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}+$ $\mathrm{H}_{2} \mathrm{O}$ taken as a model of the reaction [Pt(dien)$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{Y}^{-} \rightarrow[\mathrm{Pt}(\text { dien }) \mathrm{Y}]^{+}+\mathrm{H}_{2} \mathrm{O}$ (dien $=$ diethylenetriamine, $\mathrm{NH}_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NHC}_{2} \mathrm{H}_{4} \mathrm{NH}_{2}$). ${ }^{466,467}$ Such exchange reactions between water and an incoming ligand Y are the second step of the solvation pathway of substitution reactions taking place in water, the first step consisting of the exchange between the leaving ligand X and water in $[\operatorname{Pt}(\text { dien }) X]^{+} .{ }^{462}$ The primary goal of this study was to determine an analytical potential energy function for the interaction between $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}, \mathrm{Cl}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$ for further molecular simulation via Monte Carlo calculations. A potential function that assumes pairwise additivity cannot reproduce the ab initio potential energy, especially in the region of the transition state. The inclusion of repulsive three-body effects is crucial for a correct fitting of the ab initio potential energy function. This is best seen in Figure 19, which displays both energy profiles together with the corresponding geometries of intermediates and transition states for the reaction $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{Cl}^{-}$ $\rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{+}+\mathrm{H}_{2} \mathrm{O}$. Preliminary Monte Carlo calculations along the intrinsic reaction coordinate have al so been performed. They show, as the reaction proceeds, an increase of the potential energy due to the reduction of the solvation ability of the system. ${ }^{467}$
We have seen in a previous subsection that for the CO coordination step of carbonylation reactions using either cationic or neutral Pd(II) complexes, the associative mechanism is the one that has been put forth by the theoretical studies. ${ }^{412-414}$ Prior to their investigation of the CO insertion, Yates and coworkers had extended their methodological study of the reaction $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)+\mathrm{CO} \rightarrow \mathrm{PdCO}+\mathrm{PH}_{3}$ to the more real istic system $\left[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCOO})\left(\mathrm{CH}_{3}\right)\left(\mathrm{PH}_{3}\right)\right]$, 28. ${ }^{468}$ Thus, for each stationary point of the path of the reaction $\left[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCOO})\left(\mathrm{CH}_{3}\right)\left(\mathrm{PH}_{3}\right)\right]+\mathrm{CO} \rightarrow$ $\left[\mathrm{Pd}(\mathrm{HN}=\mathrm{CHCOO})\left(\mathrm{CH}_{3}\right)(\mathrm{CO})\right]+\mathrm{PH}_{3}$, a full geometry optimization has been done and different basis sets, pseudopotentials, and levels of theory, viz. HF, MP2, $\operatorname{CCSD}(\mathrm{T})$, and DFT with various functionals, have been tested. It has been concluded that quite reliable results can be obtained at the MP2 level with a smallcore pseudopotential and a polarized double- ζ basis set. DFT methods have been found to yield correct geometries, except when using the B3LYP functional for the trigonal-bipyramid transition state. The optimized geometry in this case corresponds to the replacement of the chelate nitrogen rather than the phosphine, at variance with all other methods, which invariably gave a transition state corresponding to

Figure 19. Potential energy profiles for the reaction $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}+\mathrm{Cl}^{-} \rightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}(\mathrm{Cl})\right]^{+}+\mathrm{H}_{2} \mathrm{O}$ from the ab initio calculations and from an analytical potential function including the three-body terms, together with the optimized structures of the two five-coordinate intermediates and the transition state between them. (Reprinted with permission from ref 467.) Copyright 1995.
the replacement of the phosphine. Thus, some warning has to be given when this functional is used for optimizing transition structures that have one or several "isomers" close to each other. ${ }^{468}$

It should be mentioned that in some instances a dissociative mechanism can be preferred. Results from kinetic studies on the displacement of thioethers from the cis -[$\left[\mathrm{PtPPh}_{2}\left(\mathrm{Et}_{2} \mathrm{~S}\right)_{2}\right]$ with pyridine or substituted pyridine have been interpreted as indicative of a dissociative mechanism. There the rate-determining step is the dissociation of thioether and the formation of a transient three-coordinate [PtPPh 2_{2} ($\mathrm{Et}_{2} \mathrm{~S}$)] intermediate. ${ }^{469}$ Extended Hückel calculations and the corresponding molecular electrostatic potential calculations on the cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{Me}_{2} \mathrm{~S}_{2}\right]\right.$ and cis$\left[\mathrm{PtMe} \mathrm{e}_{2}\left(\mathrm{Me}_{2} \mathrm{~S}\right)_{2}\right]$ have been used to rationalize these features. ${ }^{469}$ It has been argued that when strong σ-donor ligands such as Me or Et are present, the $\mathrm{Pt}-\mathrm{S}$ bond is lengthened and that the electronelectron repulsion from the $\mathrm{d}_{2}{ }^{2}$ orbital is increased, these two factors disfavoring the association of the incoming ligand and favoring the dissociation of a thioether. Note also that either Me or Et make covalent bonds with the metal. One should stress that the ab initio calculations that favor the associative mechanism, so far, pertain to systems which do not have two strong covalently bound ligands. Systems such as the ones above might be worth investigating with ab initio methods.

5. Metal-Mediated Oxidation Reactions

The reaction of methane with the diatomic [PdO] has been investigated by Broclawik and co-workers
as a first step toward a better understanding of the activation of methane on palladium and palladium oxide surfaces. ${ }^{105}$ We have reviewed their DFT study of [PdO] al one. The same authors al so considered its interaction with methane. The geometry optimizations, which were restricted to assumed approaches, were carried out at the LDA level, the relative energies being obtained with nonlocal corrections of the exchange and correlation functionals. Two molecular complexes have been obtained. In the first one, which corresponds to a collinear approach of CH_{4} and [PdO], CH_{4} is weakly bound (by $3.3 \mathrm{kcal} \mathrm{mol}^{-1}$, NL-DFT value) in an η^{2} fashion, but this does not lead to $\mathrm{C}-\mathrm{H}$ bond cleavage. The second one is unbound with respect to the separated reactants but nevertheless corresponds to a very shallow minimum on the potential energy curve. It is lying 4.5 kcal mol^{-1} (NL -DFT value) above the collinear molecular complex and has one $\mathrm{C}-\mathrm{H}$ bond bridging $\mathrm{Pd}-\mathrm{O}$. Further approaching CH_{4} from $\mathrm{Pd}-\mathrm{O}$ leads to cleavage of the $\mathrm{C}-\mathrm{H}$ bond and the formation of a singlet, which is $32.8 \mathrm{kcal} \mathrm{mol}^{-1}$ below the separated reactants. Since the ground state of [PdO] is a triplet (vide supra), the system has to undergo a singlettriplet crossing along the reaction path. An approximate transition state was located at a $\mathrm{C}-\mathrm{H}$ bond stretch of $1.4 \AA$, with an activation energy of $21.2 \mathrm{kcal}^{\mathrm{mol}}{ }^{-1}$ above the separated reactants (or 24.5 $\mathrm{kcal} \mathrm{mol}^{-1}$ above the collinear molecular complex). The authors have extended their study to the reaction with [RhO] and to the reaction with Pd_{2} and [$\mathrm{Pd}_{2} \mathrm{O}$]. ${ }^{393,470}$ We have already mentioned that the results obtained for Pd_{2} were rather similar to those

Figure 20. Optimized structures of the stationary points (precursor complex (a), transition state (b), and product (c)) for the constrained reaction path of the reaction $\mathrm{CH}_{4}+\mathrm{Pd}_{2} \mathrm{O}$. (Reprinted with permission from ref 393.) Copyright 1997.

Figure 21. Optimized structures of the stationary points for the H migration in the $\mathrm{Pd} d_{2} \mathrm{O}(\mathrm{H})\left(\mathrm{CH}_{3}\right)$ system; starting structure (a), active intermediate (b), transition state (c), and product (d). (Reprinted with permission from ref 393).
that have been obtained later by Musaev et al. ${ }^{237}$ via a full geometry optimization. For the activation of CH_{4} on $\left[\mathrm{Pd}_{2} \mathrm{O}\right]$, the linearity of the [$\left.\mathrm{Pd}_{2} \mathrm{O}\right]$ arrangement was maintained. Thus, as stated by the authors themselves, this investigation is not meant to represent the real surface of palladium oxide. It should merely help for understanding the mechanism of some possible elementary steps. It is therefore noteworthy that the reaction pathway obtained for CH_{4}
 Pd_{2}. In particular, an asymmetric transition state is found (see b of Figure 20) corresponding to an oxidative addition to the palladium atom and not to the $\mathrm{Pd}-\mathrm{O}$ bond. The activation energy (with respect to the molecular precursor a) is $14.3 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}(\mathrm{NL}-$ DFT value), to be compared to $5.2 \mathrm{kcal} \mathrm{mol}^{-1}$ for Pd_{2} (vide supra). An interesting result of the study is the fate of product of the oxidative addition. ${ }^{393}$ As seen in Figure 21, the hydrogen atom undergoes a shift from the bridging position between the two palladiums to the terminal position to the oxygen atom. Concomitantly, the bridging methyl shifts backward to the terminal palladium. The activation energy for this process is $27.1 \mathrm{kcal} \mathrm{mol}^{-1}$. Broclawik et al. noticed that the methyl is now in a favorable position for the activation of the next $\mathrm{C}-\mathrm{H}$ bond, such that the entire cycle may be repeated. They have not investigated this point further, however. In view of the results brought by Musaev et al., ${ }^{237}$ it would be quite interesting to have full geometry optimizations for such processes.

One may wonder why the oxidative addition of CH_{4} on [PdO] could not also be a two-step process. Such a two-step process would involve first $\mathrm{C}-\mathrm{H}$ oxidative addition on Pd, followed by the transfer to the oxygen atom. Indeed, in their study of the Pt^{+}-catalyzed oxidation of methane, ${ }^{359}$ Schwarz, Siegbahn, and coworkers found that the two-step mechanism is more favorable than the one-step mechanism for the reaction $\left[\mathrm{PtO}^{+}+\mathrm{CH}_{4}\right.$. Starting from an electrostatically
bound $\left[\mathrm{OPt}\left(\mathrm{CH}_{4}\right)\right]^{+}$system, the transition state for the one-step process was computed $8.8 \mathrm{kcal} \mathrm{mol}^{-1}$ (DFT-B3LYP value) abovethe transition state for the $\mathrm{C}-\mathrm{H}$ bond oxidative addition on Pt and $5.0 \mathrm{kcal} \mathrm{mol}^{-1}$ above the transition state for the H migration from Pt to O. Note that at the $\mathrm{PCI}-80$ level the $\mathrm{C}-\mathrm{H}$ bond oxidative addition is downhill on the doublet surface and that the process involves a spin crossing since the ground state of $\left[\mathrm{OPt}\left(\mathrm{CH}_{4}\right)\right]^{+}$, as is the one of [PtO$]^{+}$, is a quartet. The results on $[\mathrm{PtO}]^{+}$may not be directly transferable to [PdO], however, since we have seen in the work of Musaev et al. on the oxidative addition on Pd_{2} and $\mathrm{Pt}_{2}{ }^{237}$ that the $\mathrm{C}-\mathrm{H}$ bond activation on a single metal atom seems to be specific to platinum.

Schwarz, Siegbahn et al. have al so investigated for the Pt^{+}-catalyzed oxidation of methane ${ }^{359}$ other pathways than the oxidative addition of CH_{4} to $[\mathrm{PtO}]^{+}$. Among these, another important pathway is the [Pt$\left.\left(\mathrm{CH}_{2}\right)\right]^{+}+\mathrm{O}_{2} \rightarrow\left[\mathrm{PtO}^{+}+\mathrm{CH}_{2} \mathrm{O}\right.$ reaction. Many computational difficulties have been encountered due to large near-degeneracy effects arising from the combination of the doublet ground state of $\left[\mathrm{Pt}\left(\mathrm{CH}_{2}\right)\right]^{+}$ with the triplet ground state of O_{2} to give a quartet ground state for [PtO] ${ }^{+}$and a singlet state for $\mathrm{CH}_{2} \mathrm{O}$, from sudden changes in the occupancy of the orbitals from one point of the potential energy surface to another. In fact, in many instances the wave function was not dominated by a single determinant, hence leading to unreliable MCPF and $\mathrm{PCI}-80$ results. On the other hand and rather unexpectedly, the B3LYP energies gave results in qualitative agreement with the available experimental data. From the calculations it could be shown that the reaction $\left[\mathrm{Pt}\left(\mathrm{CH}_{2}\right)\right]^{+}$ $+\mathrm{O}_{2} \rightarrow\left[\mathrm{PtO}^{+}+\mathrm{CH}_{2} \mathrm{O}\right.$ proceeds through a fourmembered metallacycle formed by the [$2+2$] addition of O_{2} to $\left[\mathrm{Pt}\left(\mathrm{CH}_{2}\right)\right]^{+}$. F or this reaction an estimate of the activation energy is $2.6 \mathrm{kcal} \mathrm{mol}^{-1}$ above the entrance channel. The corresponding product is a strongly bound electrostatic complex $\left[\mathrm{OPt}\left(\mathrm{OCH}_{2}\right)\right]^{+}$.

The relative feasibility of the various exit channels from this complex has also been assessed. ${ }^{359}$

Fantucci et al. reported a preliminary investigation of the mechanism of the epoxidation of olefins cataIyzed by alkyl peroxo complexes of platinum(II).471 The results are quite tentative, due to the fact no strict comparison of all possible steps could be made. Moreover, solvation effects are believed to be quite important since at some stage of the process a protonation reaction may be involved. The results led, however, to an interesting proposal for the mechanism that had not been considered experimentally before. 472 In this mechanism the $\mathrm{Pt}-\mathrm{OOH}$ complex would first undergo a 1,2 shift of hydrogen over the $\mathrm{O}-\mathrm{O}$ bond to generate a $\mathrm{Pt}-\mathrm{O}(\mathrm{H}) \mathrm{O}$ isomer, with an oxywater-like structure. This isomer would then easily transfer its terminal hydrogen to the olefin. Support for this proposal comes from the lowering of the energy barrier for the 1,2 shift when going from the hydroperoxide HOOH or substituted hydroperoxides to the $\left[\left(\mathrm{PH}_{3}\right)_{2}\left(\mathrm{CF}_{3}\right) \mathrm{Pt}-\mathrm{OOH}\right]$ and $\left[\left(\mathrm{PH}_{3}\right)_{2}(\mathrm{Cl})\right.$ -$\mathrm{Pt}-\mathrm{OOH}]$ complexes: in the former case, the barriers range between 52 and $65 \mathrm{kcal} \mathrm{mol}^{-1}$, whereas they amount to 37.9 and $39.1 \mathrm{kcal} \mathrm{mol}^{-1}$ for the two platinum complexes. ${ }^{471}$

6. Studies of Catalytic Cycles

The understanding gained in the theoretical studies of the prototype reactions combined with the relatively good accuracy of the current methodol ogies has paved the way for studying full cycles in homogeneous catalysis (or a major part of these cycles). As far as palladium and platinum complexes are concerned, we have al ready mentioned the silastannation of acetylenes catalyzed by palladium complexes, ${ }^{169}$ the hydrosilylation of ethylene catalyzed by $\mathrm{Pt}(0)$ bisphosphine complexes. ${ }^{381}$ Sakaki has also performed a study of the disilylation of al kenes catalyzed by $\mathrm{Pt}(0)$ bisphosphine complexes. ${ }^{473}$ The study of several steps of the oxidation of ethylene to acetaldehyde in water catalyzed by palladium chloride (Wacker process), including the influence of the water solvent, was first tackled by Siegbahn. ${ }^{459,460}$ Very recently, van Santen and co-workers have analyzed, using DFT-B3LYP calculations, the same reaction catalyzed by palladium acetate dimers in acetic acid. ${ }^{774}$ The thermochemistry of the oxidation of methane to methyl bisulfate, catalyzed by a bisamine Pt complex in the presence of sulfuric acid, has been assessed via DFT-B3LYP calculations, including solvation effects. ${ }^{475}$ The results are in line with the mechanism proposed experimentally, ${ }^{476}$ although as stated by the authors themselves, more work is needed especially with respect to the determination of the energy barriers of the various steps. M orokuma, Musaev, and co-workers have compared alkyne diboration and the alkene diboration reactions catalyzed by $\mathrm{Pt}(0)$ bisphosphine complexes. ${ }^{384}$ They have also rationalized, on the basis of the propensity of $\left[\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left\{\mathrm{~B}(\mathrm{OH})_{2}\right\}_{2}\right]$ intermediates to easily undergo the reductive elimination back to the reactants $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}$ and $\left[(\mathrm{OH})_{2} \mathrm{~B}-\mathrm{B}(\mathrm{OH})_{2}\right]$, why $\mathrm{Pd}(\mathrm{O})$ complexes do not catalyze the same reaction. ${ }^{385}$ They have extended the scope of their study of this class of
reactions to the study of the alkyne thioboration, catalyzed either by $\mathrm{Pd}(0)$ or $\mathrm{Pt}(0)$ diphosphine complexes. They have, in particular, explained the inefficiency of $\operatorname{Pt}(0)$ complexes-in contrast to the alkyne di boration-as catalysts. ${ }^{378}$ The mechanism of the Pd-(0)-catalyzed C-C coupling reaction of an aryl with an olefin (the Heck reaction) in which the catalyst is a bisphosphine $\mathrm{Pd}(0)$ complex stabilized by the coordination of N -heterocyclic carbenes has been unravelled by Rösch and co-workers. ${ }^{477}$ And last but not least, one should mention all the theoretical investigations of the polymerization of ol efins ${ }^{374,405,478-480}$ or of the copolymerization of carbon monoxide and olefins ${ }^{400,418,481,482}$ that are both catalyzed by Pd complexes.

V. Conclusion and Perspectives

It should be clear from this review that the theoretical studies in palladium and platinum molecular chemistry have been done along two main directions. On the one hand, there has been an impressive amount of work devoted to small molecular systems involving one or very few metal atoms. For such systems, the performance of highly sophisticated methods with respect to accuracy and transferability could be tested. It has been shown that spin-orbit effects are of crucial importance to obtain reliable spectroscopic properties, especially for platinum systems. The necessity of using large and flexible basis sets contributes to the difficulty of such calculations. Yet there are, in some instances, still rather large discrepancies between theory and experiment for bond dissociation energies: representative examples indude PdCO, PtCO, PdO, and $\mathrm{PdCH}_{2}{ }^{+}$. These issues have to be settled from both the theoretical and experimental sides. From a more chemical point of view, theoretical studies have been quite successful at analyzing and predicting trends, at delineating the factors that account for thesetrends. A coherent picture has emerged that relies on the extent of the sd hybridization in the metal atoms. The accuracy that is currently reached allows fruitful cooperative work between theory and experiment in gas-phase reactivity. In some cases, the theoretical studies have been of invaluable value for the understanding of such experiments. One should see more studies of that type in the near future.
Besides these studies on small molecular systems, the devel opment of the computational machinery (on the software side as on the hardware side) has allowed one to tackle more and more accurately and reliably problems involving transition-metal complexes or molecular complexes. These comprise the rationalization of structural features (such as weak metal-metal interactions or metal-ligand interactions), the determination of reaction pathways in stoichiometric or catalytic processes, and the interplay between the structural and reactivity aspects in chemo-, regio-, or stereoselective reactions. It has been shown that in order to get results that are qualitatively correct, one needs basis sets which are at least of valence double ζ quality and that include polarization functions (e.g., on the reacting atoms in reactivity studies). Relativistic effects have to be
taken into account, at least the spin-free ones. In standard treatments, this is generally done by using quasirelativistic pseudopotentials for Pd or Pt. Electron correlation effects al so have to be accounted for, via either MP2 or DFT calculations. The most recent studies have taken advantage of the devel opment of the DFT methods which have proven to be more and more reliable, especially for geometry optimizations (although some pathol ogical cases still exist). There is also no doubt that the theoretical studies will rely more and more on integrated methods combining treatments of various kinds, e.g., quantum mechanics (with various methods for electron correlation including the DFT ones), molecular mechanics, molecular dynamics, Monte Carlo calculations, or Car-Par-rinello-type methods. With such methods, one can now envision calculating very large systems, such as biological systems and dendrimers, or treating problems of enantioselective catalysis.

Another issue which will be important in the near future deals with the effects induced by the environment, e.g., the effects of the counterions, of the crystal, or of the solution. We have seen in this review some studies that have addressed this issue. Methodologies have to be assessed for treating solvation effects accurately. The continuum model, which is currently quite popular, has limitations, in particular when microsolvation effects are at work. Here too, integrated methods might be the panacea.

The way is therefore open to cope with problems of increasing complexity, a trend which is also observed in experimental studies. There is no doubt that one will see from the experimental side a call for theoretical studies of more modeling character.

VI. References

(1) Hartley, F. R. The Chemistry of Platinum and Palladium; Applied Science Publishers Ltd.: London, 1973.
(2) J ain, V. K.; Rao, G. S.; J ain, L. Adv. Organomet. Chem. 1987, 27, 113.
(3) Usón, R.; Fornies, J. Adv. Organomet. Chem. 1988, 28, 219.
(4) Buyers, P. K.; Canty, A. J.; Honeyman, R. T. Adv. Organomet. Chem. 1992, 34, 1992.
(5) Anderson, G. K. Adv. Organomet. Chem. 1993, 35, 1.
(6) Albeniz, A. C.; Espinet, P. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; J. Wiley: New York, 1994; Vol. 6; p 3010.
(7) Suggs, J. W. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed.; J. Wiley: New York, 1994; Vol. 6; p 3023.
(8) Tsuji, J. Palladium Reagents and Catalysis: Innovations in Organic Synthesis; Wiley: Chichester, 1995.
(9) Comprehensive Organometallic Chemi stry II; Puddephatt, R. J., Ed.; Pergamon: Oxford, 1995; Vol. 9.
(10) Comprehensive Organometallic Chemistry II; Hegedus, L., Ed.; Pergamon: Oxford, 1995; Vol. 12.
(11) Negishi, E. I.; Copéret, C.; Ma, S.; Liou, M.-Y.; Liu, F. Chem. Rev. 1996, 96, 365.
(12) Rendina, L. M.; Puddephatt, R. J. Chem. Rev. 1997, 97, 1735.
(13) Veillard, A. Chem. Rev. 1991, 91, 743.
(14) Koga, N.; M orokuma, K. Chem. Rev. 1991, 91, 823.
(15) Moore, C. E. Atomic Energy Levels As Derived From TheAnalyses of Optical Spectra; U.S. Government Printing Office: Washington , DC, 1971.
(16) Transition Metal Hydrides; Dedieu, A., Ed.; VCH Publishers: New York, 1992.
(17) Grushin, V. V. Chem. Rev. 1996, 96, 2011.
(18) Balasubramanian, K.; Feng, P. Y.; Liao, M. Z. J. Chem. Phys. 1987, 87, 3981.
(19) Langhoff, S. R.; Petterson, L. G. M.; Bauschlicher, C. W. J. J . Chem. Phys. 1987, 86, 268.
(20) Siegbahn, P. E. M. Theor. Chim. Acta 1993, 86, 219.
(21) Balasubramanian, K. J. Chem. Phys. 1990, 93, 8061.
(22) Laj ohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. J. Chem. Phys. 1987, 87, 2812.
(23) Balasubramanian, K. J. Phys. Chem. 1989, 93, 6585.
(24) Lagerqvist, A.; Neuhaus, H.; Scullman, R. Proc. Phys. Soc. 1964, 83, 498.
(25) Malmberg, C.; Scullman, R.; Nylen, P. Ark. Fys. 1969, 39, 495.
(26) Tolbert, M. A.; Beauchamp, J. L. J . Phys. Chem. 1986, 90, 5015.
(27) Sjøvoll, M.; Fagerli, H.; Gropen, O.; Almlöf, J . J. Chem. Phys. 1997, 107, 5496.
(28) J enderek, J.; Marian, C. M. Theor. Chim. Acta 1994, 88, 13.
(29) Fleig, T.; Marian, C. M. J. Chem. Phys. 1998, 108, 3517.
(30) Basch, H.; Topiol, S. J. Chem. Phys. 1979, 71, 802.
(31) Basch, H.; Cohen, D.; Topiol, S. Isr. J. Chem. 1980, 19, 233.
(32) Wang, S. W.; Pitzer, K. S. J. Chem. Phys. 1983, 79, 3851.
(33) Rohlfing, C. M.; Hay, P. J .; Martin, R. L. J . Chem. Phys. 1986, 85, 1447.
(34) Balasubramanian, K.; Feng, P. Y. J. Chem. Phys. 1990, 92, 541.
(35) Tobisch, S.; Rasch, G. Chem. Phys. Lett. 1990, 166, 311.
(36) Gropen, O.; Almlöf, J .; Wahlgren, U. J. Chem. Phys. 1992, 96, 8363.
(37) McCarthy, M. C.; Field, R. W.; Engelman, K., J r.; Bernath, P. F. J. Mol. Spectrosc. 1993, 158, 208.
(38) Gustafsson, G.; Schullman, R. Mol. Phys. 1989, 67, 981.
(39) Dyall, K. G. J. Chem. Phys. 1993, 98, 9678.
(40) Visscher, L.; Saue, T.; Nieuwpoort, W. C.; Faegri, K.; Gropen, O. J. Chem. Phys. 1993, 99, 6704.
(41) Fleig, T.; Marian, C. M. Chem. Phys. Lett. 1994, 222, 267.
(42) Relativistic Cal culations on TM Complexes; Marian, C. M., Ed.; Department of Chemical Physics and Material Science Centre, University of Groningen: Groningen, 1994.
(43) Sjøvoll, M.; Fagerli, H.; Gropen, O.; Almlöf, J .; Olsen, J .; Helgaker, T. U. Int. J. Quantum Chem. 1998, 68, 53.
(44) Heinemann, C.; Koch, W.; Schwarz, H. Chem. Phys. Lett. 1995, $245,509$.
(45) Stevens, W. J.; Krauss, M.; Basch, H.; J asien, P. G. Can. J. Chem. 1992, 70, 612.
(46) Hess, B. A.; Marian, C. M.; Wahlgren, U.; Gropen, O. Chem. Phys. Lett. 1996, 251, 365.
(47) Marian, C. M.; Wahlgren, U. Chem. Phys. Lett. 1996, 251, 357.
(48) Zurita, S.; Rubio, J.; Illas, F.; Barthelat, J. C. J. Chem. Phys. 1996, 104, 8500.
(49) Balasubramanian, K. J. Chem. Phys. 1987, 87, 2800.
(50) Bagatur'yants, A. A.; Anikin, N. A.; Zhidomirov, G. M.; Kazanskii, V. B. Russ. J. Phys. Chem. 1981, 55, 1157.
(51) Blomberg, M.; Brandemark, U.; Pettersson, L.; Siegbahn, P. Int. J. Quantum Chem. 1983, 23, 855.
(52) Nakatsuji, H.; Hada, M. Croat. Chim. Acta 1984, 57, 1371.
(53) J arque, C.; Novaro, O.; Ruiz, M. E.; Garcia-Prieto, J. J. Am. Chem. Soc. 1986, 108, 3507.
(54) Poulain, E.; Garcia-Prieto, J.; Ruiz, M. E.; Novaro, O. Int. J. Quantum Chem. 1986, 29, 1181.
(55) Low, J. J.; Goddard, W. A., III Organometallics 1986, 5, 609.
(56) Nakatsuji, H.; Hada, M.; Y onezawa, T. J. Am. Chem. Soc. 1987, 109, 1902.
(57) Balasubramanian, K. J. Chem. Phys. 1988, 88, 6955.
(58) Nakatsuji, H.; Matsuzaki, Y.; Yonezawa, T. J . Chem. Phys. 1988, 88, 5759.
(59) Gropen, O.; Sjøvoll, M.; Strømsnes, H.; Karlsen, E.; Swang, O.; Faegri, K., J r. Theor. Chim. Acta 1994, 87, 373.
(60) Diez, R. P. Chem. Phys. Lett. 1998, 287, 542.
(61) Ziegler, T.; Li, J. Can. J. Chem. 1994, 72, 783.
(62) Heinemann, C.; Hertwig, R. H.; Wesendrup, R.; Koch, W.; Schwarz, H. J. Am. Chem. Soc. 1995, 117, 495.
(63) Zhang, H.; Balasubramanian, K. J . Phys. Chem. 1992, 96, 6981.
(64) Ozin, G. A.; Garcia-Prieto, J . J . Am. Chem. Soc. 1986, 108, 3099.
(65) Knight, L. B., J r.; Cobranchi, S. T.; Herlong, J.; Kirk, T.; Balasubramanian, K.; Das, K. K. J . Chem. Phys. 1990, 92, 2721.
(66) Gusev, D. G.; Notheis, J. U.; Rambo, J. P.; Hauger, B. E.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116, 7409.
(67) Siegbahn, P. E. M. Theor. Chim. Acta 1994, 87, 441.
(68) Hay, P. J.; Wadt, W. R. J . Chem. Phys. 1985, 82, 299.
(69) Siegbahn, P. E. M. Theor. Chim. Acta 1994, 88, 413.
(70) Reynolds, G. G.; Carter, E. A. J. Phys. Chem. 1994, 98, 8144.
(71) Macgregor, S. A.; Moock, K. H. Inorg. Chem. 1998, 37, 3284.
(72) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
(73) Deeth, R. J.; J enkins, H. D. B. J. Phys. Chem. A 1997, 101, 4793.
(74) Bray, M. R.; Deeth, R. J.; Paget, V. J.; Sheen, P. D. Int. J. Quantum Chem. 1996, 61, 85.
(75) Sakai, Y.; Oshibe, T.; Miyoshi, E. Acta Crystallogr. 1996, B52, 251.
(76) Pacchioni, G.; Bagus, P. S. Inorg. Chem. 1992, 31, 4391.
(77) Fantucci, P.; Polezzo, S.; Sironi, M.; Bencini, A. J. Chem. Soc., Dalton Trans. 1995, 4121.
(78) Frankcombe, K. E.; Cavell, K. J .; Yates, B. F.; Knott, R. B. J . Phys. Chem. 1995, 99, 14316.
(79) Matsubara, T.; Maseras, F.; Koga, N.; M orokuma, K. J . Phys. Chem. 1996, 100, 2573.
(80) Leoni, P.; Chiaradonna, G.; Pasquali, M.; Marchetti, F.; Fortunelli, A.; Germano, G. Inorg. Chim. Acta 1997, 264, 185.
(81) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. Inorg. Chem. 1993, 32, 4218.
(82) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J. Phys Chem. 1993, 97, 2564.
(83) Papai, I.; Goursot, A.; St-Amant, A.; Salahub, D. R. Theor. Chim. Acta 1992, 84, 237.
(84) Smith, G. W.; Carter, E. A. J . Phys. Chem. 1991, 95, 2327.
(85) Blomberg, M. R. A.; Lebrilla, C. B.; Siegbahn, P. E. M. Chem Phys. Lett. 1988, 150, 522.
(86) Barnes, L. A.; Rosi, M.; Bauschlicher, C. W., J r. J . Chem. Phys 1990, 93, 609.
(87) Roszak, S.; Balasubramanian, K. Chem. Phys. Lett. 1993, 212, 150.
(88) Roszak, S.; Balasubramanian, K.J. Phys. Chem. 1993, 97, 11238
(89) Grushow, A.; Ervin, K. M. J. Chem. Phys. 1997, 106, 9580.
(90) Chung, S.-C.; K rüger, S.; Pacchioni, G.; Rösch, N. J . Chem. Phys 1995, 102, 3695.
(91) Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. 1995 117, 486.
(92) Snijders, J. G.; Baerends, E. J. Mol. Phys. 1978, 36, 1789.
(93) Snijders, J. G.; Baerends, E. J.; Ros, P. Mol. Phys. 1979, 38, 1909
(94) Ziegler, T.; Tschinke, V.; Baerends, E. J.; Snijders, J. G.; Ravenek, W. J. Phys. Chem. 1989, 93, 3050.
(95) J onas, V.; Thiel, W. J. Chem. Phys. 1995, 102, 8474.
(96) Ehlers, A. W.; Frenking, G. Organometallics 1995, 14, 423.
(97) J onas, V.; Thiel, W. Organometallics 1998, 17, 353.
(98) Srdanov, V. I.; Harris, D. O. J . Chem. Phys. 1987, 89, 2658.
(99) Sassenberg, V.; Scullman, R. Phys. Scr. 1987, 28, 1983.
(100) Schwerdtfeger, P.; McFeaters, J. S.; M oore, J. J.; McPherson D. M.; Cooney, R. P.; Bowmaker, G. A.; Dolg, M.; Andrae, D. Langmuir 1991, 7, 116.
(101) Bauschlicher, C. W.; Nelin, C. J.; Bagus, P. S. J. Chem. Phys. 1985, 82, 3265.
(102) Siegbahn, P. E. M. Chem. Phys. Lett. 1993, 201, 15.
(103) Siegbahn, P. E. M. J. Phys. Chem. 1993, 97, 9096.
(104) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure; Van Nostrand Reinhold: New York, 1979.
(105) Broclawik, E.; Yamauchi, R.; Endou, A.; Kubo, M.; Miyamoto A. J. Chem. Phys. 1996, 104, 4098.
(106) Kirchner, E. J. J.; Baerends, E. J.; Sloten, U. v.; Kleyn, A. W. J Chem. Phys. 1992, 97, 3821.
(107) Carroll, J.J.; Haug, K. L.; Weisshaar, J. C.; Blomberg, M. R A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1995, 99 13955.
(108) Ehlers, A. W.; Dapprich, S.; Vyboishchikov, S.; Frenking, G Organometallics 1996, 15, 105.
(109) Carroll, J . J .; Weisshaar, J. C.; Siegbahn, P. E. M.; Wittborn, C A. M.; Blomberg, M. R. A. J . Phys. Chem. 1995, 99, 14388.
(110) Bauschlicher, C. W.; Partridge, H.; Sheehy, J . A.; Langhoff, S R.; Rosi, M. J. Phys. Chem. 1992, 96, 6969.
(111) Irikura, K. K.; Goddard, W. A., III J . Am. Chem. Soc. 1994, 116, 8733.
(112) Ohanessian, G.; Goddard, W. A., III Acc. Chem. Res. 1990, 23, 386.
(113) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. Chem. Phys. Lett. 1994, 223, 35.
(114) Eriksson, L. A.; Pettersson, L. G. M.; Siegbahn, P. E. M.; Wahlgren, U. J. Chem. Phys. 1995, 102, 872.
(115) Wesendrup, R.; Schröder, D.; Schwarz, H. Angew. Chem., Int Ed. Engl. 1994, 33, 223.
(116) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(117) Heinemann, C.; Schwarz, H.; K och, W.; Dyall, K. G. J . Chem Phys. 1995, 104, 4642.
(118) Ross, R. B.; Powers, J. M.; Atashroo, T.; Ermler, W. C.; LaJ ohn L. A.; Christiansen, P. A. J . Chem. Phys. 1990, 93, 6654.
(119) Sirois, S.; Castro, M.; Salahub, D. R. Int. J. Quantum Chem. 1994, S28, 645
(120) Sakamoto, M.; Shimizu, I.; Yamamoto, A. Organometallics 1994, 13, 407.
(121) Sakaki, S.; Dedieu, A. Inorg. Chem. 1987, 26, 3278
(122) Gauthron, I.; Mugnier, Y.; Hierso, K.; Harvey, P. D. New J Chem. 1998, 22, 237.
(123) Flament, J. P.; Tadjeddine, M. Chem. Phys. Lett. 1995, 238, 193
(124) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(125) Tadjeddine, A.; Peremans, A.; Rille, A. L.; Zheng, W. Q. Tadjeddine, M.; Flament, J. P. J. Chem. Soc., Faraday Trans. 1996, 92, 3823.
(126) Decleva, P.; Ohno, M. Chem. Phys. 1992, 164, 73.
(127) Ohno, M.; Decleva, P.; Niessen, W. v. J. Chem. Phys. 1992, 97 2767.
(128) Strout, D. L.; Miller, T. F., III; Hall, M. B. J. Phys. Chem. A 1998, 102, 6307.
(129) Siegbahn, P. E. M. J. Am. Chem. Soc. 1994, 116, 7722.
(130) Siegbahn, P. E. M. J. Phys. Chem. 1995, 99, 12723.
(131) Dewar, M. J. S. Bull. Soc. Chim. (Fr.) 1951, 18, C79.
(132) Chatt, J .; Ducanson, L. A. J . Chem. Soc. 1953, 2939.
(133) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys Chem. 1992, 96, 9794.
(134) Ozin, G. A.; Power, W. G. Inorg. Chem. 1977, 16, 212.
(135) Garcia-Cuesta, I.; Sanchez de Meras, A.; Nebot-Gil, I. Mol. Phys. 1993, 78, 1449.
(136) Fahmi, A.; van Santen, R. A. J. Phys. Chem. 1996, 100, 5676
(137) Minaev, B.; Ågren, H. Int. J. Quantum Chem. 1999, 72, 581.
(138) Roszak, S.; Balasubramanian, K. Chem. Phys. Lett. 1995, 234, 101.
(139) Bauschlicher, C. W.; Partridge, H.; Langhoff, S. R. J . Phys. Chem. 1992, 96, 3273.
(140) Cheng, P. T.; Cook, C. D.; Nyburg, S. C.; Wan, K. Y. Inorg. Chem. 1971, 10, 2210.
(141) Cheng, P. T.; Nyburg, S. C. Can. J . Chem. 1972, 50, 912.
(142) Love, R. A.; Koetzle, T. F.; Williams, G. J. B.; Andrews, L. C.; Bau, R. Inorg. Chem. 1975, 14, 2653.
(143) M orokuma, K.; Borden, W. T. J . Am. Chem. Soc. 1991, 113, 1912.
(144) Li, J.; Schreckenbach, G.; Ziegler, T. Inorg. Chem. 1995, 34, 3245.
(145) Sakaki, S.; Ieki, M. Inorg. Chem. 1991, 30, 4218.
(146) Koga, N.; M orokuma, K. Chem. Phys. Lett. 1993, 202, 330.
(147) Bo, C.; Costas, M.; Poblet, J. M. J. Phys. Chem. 1995, 99, 5914.
(148) Frenking, G.; Antes, I.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; J onas, V.; Neuhaus, A.; Otto, M.; Stegmann, R.; Veldkamp, A.; Vyboishchikov, S. F. In Reviews in Computational Chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; VCH Publishers: New York, 1996; Vol. 8, p 63.
(149) Mortimer, C. T. Rev. Inorg. Chem. 1984, 6, 233.
(150) Fagan, P. J.; Calabrese, J. C. Acc. Chem. Res. 1992, 25, 134.
(151) Fagan, P.J.; Calabrese, J. C.; Mal one, B. Science 1991, 252, 1160
(152) Lichtenberger, D. L.; Wright, L. L.; Gruhn, N. E.; Rempe, M. E. Synth. Met. 1993, 59, 353.
(153) Koga, N.; Morokuma, K. Chem. Phys. Lett. 1991, 196, 191
(154) Lichtenberger, D. L.; Wright, L. L.; Gruhn, N. E.; Rempe, M. E. J. Organomet. Chem. 1994, 478, 213.
(155) Lopez, J. A.; Mealli, C. J . Organomet. Chem. 1994, 478, 161.
(156) Fagan, P. J.; Calabrese, J. C.; Malone, B. J. Am. Chem. Soc. 1991, 113, 9408.
(157) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, U.K., 1990.
(158) Bader, R. F. W. Chem. Rev. 1991, 91, 893.
(159) Dolg, M.; Pyykkö, P.; Runeberg, N. Inorg. Chem. 1996, 35, 7450.
(160) Sugimoto, M.; Horiuchi, F.; Sakaki, S. Chem. Phys. Lett. 1997, 274, 543.
(161) Strömberg, S.; Svensson, M.; Zetterberg, K. Organometallics 1997, 16, 3165.
(162) Siegbahn, P. E. M.; Strömberg, S.; Zetterberg, K. Organometallics 1996, 15, 5542.
(163) Cundari, T. R.; Gordon, M. S. J. Mol. Structure (THEOCHEM) 1994, 313, 47.
(164) Rizopoulos, A. L.; Sigalas, M. P. New J. Chem. 1994, 18, 197.
(165) Russo, N.; Toscano, M.; Rizopoulos, A. L.; Sigalas, M. P. Inorg Chim. Acta 1998, 273, 72.
(166) de Vaal, P.; Dedieu, A. J. Organomet. Chem. 1994, 478, 121.
(167) Pfeffer, M. Red. Trav. Chim. Pays-Bas 1990, 109, 567.
(168) Ryabov, A. D.; van Eldik, R.; Borgne, G. L.; Pfeffer, M. Organometallics 1993, 12, 1386.
(169) Hada, M.; Tanaka, Y.; Ito, M.; Murakami, M.; Amii, H.; Ito, Y.; Nakatsuji, H. J. Am. Chem. Soc. 1994, 116, 8754.
(170) Siegbahn, P. E. M. Theor. Chim. Acta 1994, 87, 277.
(171) Sugimoto, M.; Yamasaki, I.; Mizoe, N.; Anzai, M.; Sakaki, S. Theor. Chem. Acc. 1999, 102, 377.
(172) Steinborn, D.; Tschoerner, M.; Zweidorf, A. V.; Sieler, J .; Bögel, H. Inorg. Chim. Acta 1995, 234, 47.
(173) Engel, P. F.; Pfeffer, M.; Dedieu, A. Organometallics 1995, 14, 3423.
(174) Nakai, H.; Fukada, S.; Nakatsuji, H. J. Phys. Chem. A 1997, 101, 973.
(175) Farrar, D. H.; Payne, N. C. J . Organomet. Chem. 1981, 220, 251.
(176) Glanville, J . O.; Stewart, J . M.; Grim, S. O. J . Organomet. Chem 1967, 7, 9.
(177) Fantucci, P.; Pizzotti, M.; Porta, F. I norg. Chem. 1991, 30, 2277
(178) Fantucci, P.; Lolli, S. J . Mol. Catal. 1993, 82, 131.
(179) Fantucci, P.; Lolli, S.; Pizzotti, M. Inorg. Chem. 1994, 33, 2779.
(180) Y oshida, T.; Tatsumi, K.; Matsumoto, M.; Nakatsu, K.; Nakamura, A.; Fueno, T.; Otsuka, S. Nouv. J . Chim. 1979, 3, 761.
(181) Nakamura, S.; Morokuma, K. Organometallics 1988, 7, 1904.
(182) Hofmann, P.; Perez-M oya, L. A.; Steigelmann, O.; Riede, J. Organometallics 1992, 11, 1167.
(183) Hofmann, P. Private communication.
(184) Rohmer, M.-M.; Grand, A.; Bénard, M. J . Am. Chem. Soc. 1990, 112, 2875.
(185) Dickman, M. H.; Doedens, R. J. Inorg. Chem. 1982, 21, 682.
(186) Yang, D. S.; Bancroft, M.; Puddephatt, R. J.; Tse, J. S. Inorg. Chem. 1990, 29, 2496.
(187) Geoffroy, M.; Bernardinelli, G.; Castan, P.; Chermette, H.; Deguenon, D.; Nour, S.; Weber, J.; Wermeille, M. Inorg. Chem. 1992, 31, 5056.
(188) Ahlrichs, R.; Ballauf, M.; Eichkorn, K.; Hanemann, O.; Kettenbach, G.; Klüfers, P. Chem. Eur. J. 1998, 4, 835.
(189) Lamoen, D.; Parrinello, M. Chem. Phys. Lett. 1996, 248, 309.
(190) Fleischer, E. B.; Miller, C. K.; Webb, L. E. J. Am. Chem. Soc. 1964, 86, 2342.
(191) Shi, J .-C.; Wen, T.-B.; Zheng, Y.; Zhong, S.-J .; Wu, D.-X.; Liu, Q.-T.; Kang, B.-S.; Wu, B.-M.; Mak, T. C. W. Polyhedron 1996, 16, 369.
(192) Palmer, M.; Carter, K.; Harris, S. Organometallics 1997, 16, 2448.
(193) DePriest, J .; Zheng, G. Y.; Woods, C.; Rillema, D. P.; Mirikova, N. A.; Zandler, M. E. Inorg. Chim. Acta 1997, 264, 287.
(194) Desmarais, N.; Adamo, C.; Panunzi, B.; Barone, V.; Giovannitti, B. Inorg. Chim. Acta 1995, 238, 159.
(195) Schlecht, S.; Faza, N.; Massa, W.; Dapprich, S.; Frenking, G.; Dehnicke, K. Z. Anorg. Allg. Chem. 1998, 624, 1011.
(196) Wehman-Ooyevaar, I. C. M.; Grove, D. M.; Kooijman, H.; van der Sluis, P.; Spek, A. L.; van K oten, G. J . Am. Chem. Soc. 1992, 114, 9916.
(197) Wehman-Ooyevaar, I. C. M.; Grove, D. M.; de Vaal, P.; Dedieu, A.; van Koten, G. Inorg. Chem. 1992, 31, 5484.
(198) Milet, A.; Dedieu, A. Theor. Chim. Acta 1995, 92, 361.
(199) Canty, A. J.; Dedieu, A.; J in, H.; Milet, A.; Richmond, M. K. Organometallics 1996, 15, 2845.
(200) Milet, A.; Dedieu, A.; Canty, A. J. Organometallics 1997, 16, 5331.
(201) O'Reilly, A. A.; White, P. S.; Templeton, J L. J. Am. Chem. Soc. 1996, 118, 5684.
(202) Visentin, T.; Kochanski, E.; Dedieu, A. J. Mol. Struct. (THEOCHEM) 1998, 431, 255.
(203) Visentin, T.; Dedieu, A.; K ochanski, E.; Padel, L. J . Mol. Struct. (THEOCHEM) 1999, 459, 201.
(204) J unicke, H.; Schenzel, K.; Heinemann, F. W.; Pelz, K.; Bögel, H.; Steinborn, D. Z. Anorg. Allg. Chem. 1997, 623, 603.
(205) Kaim, W.; Klein, A.; Hazenzahl, S.; Stoll, H.; Zalis, S.; Fiedler, J. Organometallics 1998, 17, 237.
(206) Swang, O.; Blom, R.; Ryan, O. B.; F aegri, K., J r. J . Phys. Chem. 1996, 100, 17334.
(207) Àkesson, R.; Pettersson, L. G. M.; Sandström, M.; Wahlgren, U. J . Am. Chem. Soc. 1994, 116, 8691.
(208) Siegbahn, P. E. M.; Crabtree, R. H. Mol. Phys. 1996, 89, 279.
(209) Groning, O.; Elding, L. I. Inorg. Chem. 1989, 28, 3866.
(210) Aullon, G.; Alvarez, S. Inorg. Chem. 1996, 35, 3137.
(211) Ziegler, T.; Nagle, J. K.; Snijders, J. G.; Baerends, E. J . J . Am. Chem. Soc. 1989, 111, 5631.
(212) Nagle, J. K.; Balch, A. L.; Olmstead, M. M. J . Am. Chem. Soc. 1988, 110, 319.
(213) Liao, M.-S..; Zhang, Q.-E. Inorg. Chem. 1997, 36, 396.
(214) Liao, M.-S.; Zhang, Q.-E.; Schwarz, W. H. E. Z. Anorg. Allg. Chem. 1998, 624, 1419.
(215) Yakovlev, A. L.; Neyman, K. M.; Zhidomirov, G. M.; Rösch, N. J. Phys. Chem. 1996, 100, 3482 .
(216) Kozelka, J.; Savinelli, R.;'Berthier, G.; Flament, J .-P.; Lavery, R. J Comput. Chem. 1993, 14, 45.
(217) Yao, S.; Plastaras, J. P.; Marzilli, L. G. Inorg. Chem. 1994, 33, 6061.
(218) Cundari, T. R.; Fu, W.; Moody, E. W.; Slavin, L. L.; Snyder, L. A.; Sommerer, S. O.; Klinkman, T. R.j . Phys. Chem. 1996, 100, 18057.
(219) Chval, Z.; Sip, M. J . Phys. Chem. B 1998, 102, 1659.
(220) Nikolov, G. S.; Trendafilova, N.; Schöneberger, H.; Gust, R.; Kritzenberger, J.; Yersin, H. Inorg. Chim. Acta 1994, 217, 159.
(221) Carloni, P.; Andreoni, W.; Hütter, J.; Curioni, A.; Giannozzi, P.; Parrinello, M. Chem. Phys. Lett. 1995, 234, 50.
(222) Carloni, P.; Andreoni, W. J . Phys. Chem. 1996, 100, 17797.
(223) Tornaghi, E.; Andreoni, W.; Carloni, P.; Hütter, J .; Parrinello, M. Chem. Phys. Lett. 1995, 246, 469.
(224) Balasubramanian, K. J. Chem. Phys. 1988, 89, 6310.
(225) Blomberg, M. R. A.; Siegbahn, P. E. M. Chem. Phys. Lett. 1991, 179, 524.
(226) Lin, S.-S.; Strauss, B.; Kant, A. J . Chem. Phys. 1969, 51, 2282.
(227) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1992, 96, 5783.
(228) Goursot, A.;' Papai, I.; Salahub, D. R. J. Am. Chem. Soc. 1992, 114, 7452.
(229) Perdew, J. P.; Yue, W. Phys. Rev. B 1986, 33, 8800.
(230) Nakao, T.; Dixon, D. A.; Chen, H.J. Phys. Chem. 1993, 97, 12665.
(231) Seminario, J. M.; Concha, M. C.; Politzer, P. Int. J. Quantum Chem. 1993, S27, 263.
(232) Seminario, J. M.; Zacarias, A. G.; Castro, M. Int. J. Quantum Chem. 1997, 61, 515.
(233) Valerio, G.; Toulhoat, H. J. Phys. Chem. 1996, 100, 10827.
(234) Estiú, G. L.; Zerner, M. C. J . Phys. Chem. 1994, 98, 4793.
(235) Lee, C.; Wang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(236) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(237) Cui, Q.; Musaeev, D. G.; Morokuma, K. J. Chem. Phys. 1998, 108, 8418.
(238) Balasubramanian, K. J. Chem. Phys. 1987, 87, 6573.
(239) Müller, U.; Sattler, K.; Xhie, J.; Venkkateswaran, N.; Raima, G. J. Vac. Sci. Technol. B 1991, 9, 829.
(240) Miedema, A. R.; Gingerich, K. A. J. Phys. B 1979, 12, 2081.
(241) Gupta, S. A.; Nappi, B. M.; Gingerich, K. A. Inorg. Chem. 1981, 20, 966.
(242) Wang, H.; Carter, E. A. J . Phys. Chem. 1992, 96, 1197.
(243) Balasubramanian, K. J . Chem. Phys. 1989, 91, 307.
(244) Ervin, K. M.; Ho, J.; Lineberger, W. C. J. Chem. Phys. 1988, 89, 4515.
(245) Cui, Q.; Musaeev, D. G.; Morokuma, K. J . Phys. Chem. A 1998, 102, 6373.
(246) Rubio, J.; Zurita, S.; Barthelat, J . C.; Illas, F. Chem. Phys. Lett. 1994, 217, 283.
(247) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1995, 103, 648.
(248) Wang, H.; Carter, E. A. J. Am. Chem. Soc. 1993, 115, 2357.
(249) Engel, N. Acta Metall. 1967, 15, 557.
(250) Brewer, L. Acta Metall. 1967, 15, 553.
(251) Brewer, L. Science 1968, 161, 115.
(252) Dai, D.; Balasubramanian, K. J. Phys. Chem. 1992, 96, 3279.
(253) Dai, D.; Balasubramanian, K. J. Chem. Phys. 1994, 100, 1994.
(254) Payne, N. C.; Ramachandran, R.; Schoettel, G.; Vittal, J J J.; Puddephatt, R. J. Inorg. Chem. 1991, 30, 4048.
(255) Valerio, G.;'Toulhouat, H. J. Phys. Chem. A 1997, 101, 1969.
(256) Dai, D.; Roszak, S.; Balasubramanian, K. J. Chem. Phys. 1996, 104, 1471.
(257) Roszak, S.; Balasubramanian, K.J. Chem. Phys. 1995, 103, 1043.
(258) Pyykkö, P. Chem. Rev. 1997, 97, 597.
(259) Sakaki, S.; Ogawa, M.; Musahi, Y. J. Phys. Chem. 1995, 99, 17314.
(260) Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J . A.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 2063.
(261) Dedieu, A.; H offmann, R. J. Am. Chem. Soc. 1978, 100, 2074.
(262) Hubig, S. M.; Drouin, M.; Michel, A.; Harvey, P. D. Inorg. Chem. 1992, 31, 5375.
(263) Harvey, P. D.; Murtaza, Z. Inorg. Chem. 1993, 32, 4721.
(264) Couture, C.; Farrar, D. H.; Fisher, D. S.; Gukathasan, R. R. Organometall ics 1987, 6, 532.
(265) Yamamoto, Y.; Takahashi, K.; Yamazaki, H. Chem. Lett. 1985, 201.
(266) Müller, T. E.; Ingold, F.; Menzer, S.; Mingos, D. M. P.; Williams, D. J. J. Organomet. Chem. 1997, 528, 163.
(267) Tanase, T.; Nomura, T.; Fukushima, T.; Yamamoto, Y.; K obayashi, K. Inorg. Chem. 1993, 32, 4578.
(268) Liu, H.; Tan, A. L.; Mok, K. F.; Hor, T. S. A. J . Chem. Soc., Dalton Trans. 1996, 4023.
(269) Provencher, R.; Harvey, P. D. Inorg. Chem. 1996, 35, 2113.
(270) Modinos, A.; Woodward, P. J. Chem. Soc., Dalton Trans. 1974, 1516.
(271) Budzelaar, P. H. M.; van Leeuwen, P. W. V. M.; Robeek, C. F.; Orpen, A. G. Organometallics 1992, 11, 23.
(272) Bender, R.; Braunstein, P.; Dedieu, A.; Dusausoy, Y. Angew. Chem., Int. Ed. Engl. 1989, 28, 923.
(273) Kurosawa, H.; Hirako, K.; Natsume, S.; Ogoshi, S.; Kanehisa, N.; Kai, Y.; Sakaki, S.; Takeuchi, K. Organometallics 1996, 15, 2089.
(274) Sakaki, S.; Takeuchi, K.; Sugimoto, M.; Kurosawa, H. Organometallics 1997, 16, 2995.
(275) Sieler, J .; Helms, M.; Gaube, W.; Svensson, A.; Lindquist, O. J . Organomet. Chem. 1987, 320, 129.
(276) Leoni, P.; Pasquali, M.; Fadini, L.; Albinati, A.; Hofmann, P.; Metz, M. J . Am. Chem. Soc. 1997, 119, 8625.
(277) Leoni, P.; Pasquali, M.; Pieri, G.;' Albinati, A.; Pregosin, P. S.; Rüegger, H. Organometallics 1995, 14, 3143.
(278) Usón, R.; Fornies, J.; Sanz, J. F.; Usón, M. A.; Usón, I.; Herrero, S. Inorg. Chem. 1997, 36, 1912.
(279) Cordogan, J A.; Gomez-Lara, J.; Cabrera, A.; Rosas, N. J . Mol. Struct. (THEOCHEM) 1997, 392, 223.
(280) Murahashi, T.; Otani, T.; Mochizuki, E.; Kai, Y.; Kurosawa, H.; Sakaki, S. J. Äm. Chem. Soc. 1998, 120, 4536 .
(281) Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc. 1975, 97, 3553.
(282) Krogmann, K. Angew. Chem., Int. Ed. Engl. 1969, 8, 35.
(283) Connick, W. B.; M arsh, R. E.; Schaefer, W. P.; Gray, H. B. Inorg. Chem. 1997, 36, 913.
(284) Mealli, C.; Pichierri, F.; Randaccio, L.; Zangrando, E.; Krumm, M.; Holtenrich, D.; Lippert, B. Inorg. Chem. 1995, 34, 3418.
(285) Aullón, G.; Alvarez, S. Chem. Eur. J. 1997, 3, 655.
(286) Novoa, J. . .; Aullón, G.; Alemany, P.; Alvarez, S. J. Am. Chem. Soc. 1995, 117, 7169.
(287) Aulín, G.; Alemany, P.; Alvarez, S. Inorg. Chem. 1996, 35, 5061.
(288) Navarro, J. A. R.; Romero, M. A.; Salas, J. M.; Quiros, M.; Bahraoui, J. E.; Molina, J. Inorg. C'hem. 1996, 35, 7829.
(289) Rosa, A.; Ricciardi, G.; Baerends, E. J. Inorg. Chem. 1998, 37, 1368.
(290) Yip, H.-K.; Lin, H.-M.; Cheung, K.-K.; Che, C.-M.; Wang, Y. I norg. Chem. 1994, 33, 1644.
(291) Aullón, G.; Alemany, P.; Alvarez, S. J . Organomet. Chem. 1994, 478, 75.
(292) Capdevila, M.; Clegg, W.; Gonzales-Duarte, P.;J arid, A.; Lledós, A. Inorg. Chem. 1996, 35, 490.
(293) Bencini, A.; Vaira, M. d.; M orassi, R.; Stoppioni, P.; Mele, F. Polyhedron 1995, 15, 2079.
(294) Aullón, G.; Ujaque, G.; Lledós, A.; Alvarez, S.; Alemany, P. Inorg. Chem. 1998, 37, 804.
(295) Aullón, G.; Ujaque, G.; Lledós, A.; Alvarez, S. Chem. Eur. J 1999, 5, 1391.
(296) Masdeu, A. M.; Ruiz, A.; Castillón, S.; Claver, C.; Hitchcock, P. B.; Chaloner, P. A.; Bo, C.; Poblet, J. M.; Sarasa, P. J. Chem Soc., Dalton Trans. 1993, 2689.
(297) Kumar, C.; Chattopadhyay, S.; Sinha, C.; Chakravorty, A. Inorg Chem. 1994, 33, 6140.
(298) Bella, S. D.; Lanza, G.; Fragalà, I.; Marks, T. J.; Ratner, M. A Inorg. Chem. 1995, 34, 1983.
(299) Klein, A.; Kaim, W.; Hornung, F. M.; Fiedler, J .; Zalis, S. Inorg Chim. Acta 1997, 264, 269.
(300) Arena, C. G.; Ciani, G.; Drommi, D.; Faraone, F.; Proserpio, D M.; Rotondo, E. J. Organomet. Chem. 1994, 484, 71.
(301) Pichierri, F.; Chiarparin, E.; Zangrando, E.; Randaccio, L. Holthenrich, D.; Lippert, B. Inorg. Chim. Acta 1997, 264, 109
(302) Leoni, P.; Pasquali, M.; Fortunelli, A.; Germano, G.; Albinati, A. J. Am. Chem. Soc. 1998, 120, 9564.
(303) Appleton, T. G.; Byriel, K. A.; Garett, J . M.; Hall, J . R.; Kennard, C. H. L.; Mathieson, M. T.; Stranger, R. Inorg. Chem. 1995, 34 5646 and references therein
(304) Stranger, R.; Medley, G. A.; McGrady, J. E.; Garrett, J. M. Appleton, T. G. I norg. Chem. 1996, 35, 2268.
(305) Cotton, F. A.; Gu, J .; Murillo, C. A.;Timmons, D. J J J Am. Chem. Soc. 1998, 120, 13280.
(306) Duran, N.; Gonzalez-Duarte, P.; Lledós, A.; Parella, T.; Sola, J.; Ujaque, G.; Clegg, W.; Fraser, K. A. Inorg. Chim. Acta 1997 265, 89.
(307) Manojlovic-Muir, L.; Muir, K. W.; Lloyd, B. R.; Puddephatt, R J. J . Chem. Soc., Chem. Commun. 1983, 1336.
(308) Ferguson, G.; Lloyd, B. R.; Puddephatt, R. J. Organometallics 1986, 5, 344.
(309) Puddephatt, R. J.; Manojlovic-Muir, L.; Muir, K. W. Polyhedron 1990, 9, 2767.
(310) Ramachandran, R.; Yang, D.-S.; Payne, N. C.; Puddephatt, R J I Inorg. Chem. 1992, 31, 4236.
(311) Bradford, A. M.; Kristof, E.; Rashidi, M.; Yang, D.-S.; Payne, N. C.; Puddephatt, R. J . Inorg. Chem. 1994, 33, 2355.
(312) Xiao, J.; Hao, L.; Puddephatt, R. J.; Manojlovic-Muir, L.; Muir, K. W. J. Am. Chem. Soc. 1995, 117, 6316.
(313) Harvey, P. D.; Provencher, P. Inorg. Chem. 1993, 32, 61
(314) Harvey, P. D.; Hubig, S. M.; Ziegler, T. Inorg. Chem. 1994, 33, 3700.
(315) Harvey, P. D.; Hierso, K.; Braunstein, P.; Morise, X. Inorg. Chim. Acta 1996, 250, 337.
(316) Harvey, P. D.; Provencher, R.; Gagnon, J.; Zhang, T.; Fortin D.; Hierso, K.; Drouin, M.; Socol, S. M. Can. J . Chem. 1996, 74 2268.
(317) Gauthron, I.; Mugnier, Y.; Hierso, K.; Harvey, P. D. Can. J Chem. 1997, 75, 1182.
(318) Imhof, D.; Venanzi, L. M. Chem. Soc. Rev. 1994, 185.
(319) Bengtsson-Kloo, L.; Iapalucci, C. M.; Longoni, G.; Ulvenlund, S. Inorg. Chem. 1998, 37, 4335.
(320) Grönbeck, H.; Andreoni, W. Chem. Phys. Lett. 1997, 269, 385
(321) Mingos, D. M. P.; Slee, T. J . Organomet. Chem. 1990, 394, 679 and references therein.
(322) Spivak, G. J.; Puddephatt, R. J . Inorg. Chim. Acta 1997, 264, 1.
(323) Hao, L.; Manjlovic-Muir, L.; Muir, K. W.; Puddephatt, R. J.; Spivak, G. J .; Vittal, J . J .; Yufit, D. Inorg. Chim. Acta 1997, 265, 65.
(324) Yamamoto, Y.; Yamazaki, H. Inorg. Chim. Acta 1994, 217, 121.
(325) Tanase, T.; Y amamoto, Y.; Puddephatt, R. J. Organometallics 1996, 15, 1502.
(326) Tanase, T.; Ukaji, H.; Kudo, Y.; Ohno, M.; Kobayashi, K.; Yamamoto, Y. Organometallics 1994, 13, 1374.
(327) Tanase, T.; Ukaji, H.; Takahata, H.; Toda, H.; Igoshi, T. Yamamoto, Y. Organometallics 1998, 17, 196.
(328) Zhang, T.; Drouin, M.; Harvey, P. D. Inorg. Chem. 1999, 38, 1305.
(329) Olmstead, M. L.; Ginwalla, A. S.; Noll, B. C.; Tinti, D. S.; Balch A. L. J. Am. Chem. Soc. 1996, 118, 7737.
(330) Theoretical Aspects of Homogeneous Catalysis, Applications of Ab Initio Molecular Orbital Theory; Leeuwen, P. W. N. M. v., Morokuma, K., Lenthe, J. H. v., Eds.; Kluwer Academic Publishers: Dordrecht, 1995.
(331) Musaev, D. G.; M orokuma, K. In Advances in Chemical Physics; Prigogine, I., Rice, S. A., Eds.; J . Wiley: New York, 1996; Vol. XCV, p 61.
(332) Transition State Modeling for Catalysis; Truhlar, D. G., Morokuma, K., Eds.; ACS Symposium Series 721; American Chemical Society: Washington, DC, 1999.
(333) Kitaura, K.; Obara, S.; M orokuma, K. J . Am. Chem. Soc. 1981, 103, 2891.
(334) Noell, J. O.; Hay, P. J. J. Am. Chem. Soc. 1982, 104, 4578.
(335) Obara, S.; Kitaura, K.; M orokuma, K. J . Am. Chem. Soc. 1984 106, 7482.
(336) Low, J. J.; Goddard, W. A., III J. Am. Chem. Soc. 1984, 106 6928.
(337) Low, J . J.; Goddard, W. A., III J . Am. Chem. Soc. 1984, 106, 8321.
(338) Low, J. J.; Goddard, W. A., III J. Am. Chem. Soc. 1986, 108, 6115.
(339) Hay, P. J. In Transition Metal Hydrides; Dedieu, A., Ed.; VCH Publishers Inc:: New York, 1992; p 127.
(340) Hay, P. J. New J. Chem. 1991, 15, 735.
(341) Packett, D. L.; Trogler, W. C. Inorg. Chem. 1988, $27,1768$.
(342) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299.
(343) Crabtree, R. H. Chem. Rev. 1995, 95, 987.
(344) Arndtsen, B. A.; Bergman, R. G.; M obley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
(345) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879.
(346) Blomberg, M. R. A.; Siegbahn, P. E. M.; Nagashima, U.; Wennerberg, J. J. Am. Chem. Soc. 1991, 113, 424.
(347) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Am. Chem. Soc. 1992, 114, 6095.
(348) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J. Am. Chem. Soc. 1993, 115, 1952.
(349) Siegbahn, P. E. M.; Svensson, M. Chem. Phys. Lett. 1993, 216, 147.
(350) Sakaki, S.; Ogawa, M.; Kinoshita, M. J . Chem. Phys. 1995, 99, 9933.
(351) Siegbahn, P. E. M.; Blomberg, M. R. A. J . Am. Chem. Soc. 1992, 114, 10548.
(352) Siegbahn, P. E. M.; Blomberg, M. R. A.; Svensson, M. J . Am. Chem. Soc. 1993, 115, 4191.
(353) Wittborn, A. M. C.; Costas, M.; Blomberg, M. R. A.; Siegbahn, P. E. M. J. Chem. Phys. 1997, 107, 4318.
(354) Hada, M.; Nakatsuji, N.; Nakai, H.; Gyobu, S.; Miki, S. J . Mol. Struct. (THEOCHEM) 1993, 281, 207.
(355) Swang, O.; Faegri, K.; Gropen, O. J . Phys. Chem. 1994, 98, 3006.
(356) Blomberg, M. R. A.; Siegbahn, P. E. M.; Svensson, M. J. Phys. Chem. 1994, 98, 2062.
(357) Irikura, K. K.; Beauchamp, J . L.J . Phys. Chem. 1991, 95, 8344.
(358) Heinemann, C.; Wesendrup, R.; Schwarz, H. Chem. Phys. Lett. 1995, $239,75$.
(359) Pavlov, M.; Blomberg, M. R. A.; Siegbahn, P. E. M.; Wesendrup, R.; Heinemann, C.; Schwarz, H. J. Phys. Chem. A 1997, 101, 1567.
(360) Sakaki, S.; Ieki, M. J. Am. Chem. Soc. 1993, 115, 2373.
(361) Sakaki, S.; Biswas, B.; Sugimoto, M. J. Chem. Soc., Dalton Trans. 1997, 803.
(362) Su, M.-D.; Chu, S.-Y. Inorg. Chem. 1997, 37, 33400.
(363) Pross, A.;' Shaik, S. Acc. Chem. Res. 1983, 16, 363.
(364) Sakaki, S.; Biswas, B.; Sugimoto, M. Organometallics 1998, 17, 1278.
(365) Yamamoto, Y.; Al-M asum, M.; Asao, N. J . Am. Chem. Soc. 1994, 116, 6019.
(366) Hill, G. S.; Puddephatt, R. J . Organometallics 1998, 17, 1478.
(367) Milet, A.; Dedieu, A.; Kapteijn, G.; van Koten, G. Inorg. Chem. 1997, 36, 3223.
(368) K oga, N.; Morokuma, K. J . Phys. Chem. 1990, 94, 5454.
(369) Margl, P.; Ziegler, T.; Blöchl, P. E. J . Am. Chem. Soc. 1995, 117, 12625.
(370) Calhorda, M. J.; Brown, J. M.; Cooley, N. A. Organometallics 1991, 10, 1431.
(371) Milet, A.; Dedieu, A.; Canty, A. J. Organometallics 1997, 16, 5331.
(372) Su, M.-D.; Chu, S.-Y. Chem. Phys. Lett. 1998, $282,25$.
(373) Dedieu, A.; Hutschka, F.; Milet, A. In Transition State Modeling for Catalysis; Truhlar, D. G., M orokuma, K., Eds.; ACS Symposium Series 721; American Chemi cal Society: Washington, DC, 1999; p 100.
(374) Musaev, D. G.; Svensson, M.; M orokuma, K.; Strömberg, S.; Zetterberg, K.; Siegbahn, P. E. M. Organometallics 1997, 16, 1933.
(375) Shilov, A. E. In Activation and Functionalization of Alkanes; Hill, C. L., Ed.; J . Wiley: New York, 1984.
(376) Siegbahn, P. E. M.; Crabtree, R. H. J. Am. Chem. Soc. 1996, 118, 4442.
(377) Crabtree, R. H.; Siegbahn, P. E. M.; Eisenstein, O.; Rheingold, A. L.; K oetzle, T. F. Acc. Chem. Res. 1996, 29, 348.
(378) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 1383.
(379) Sakaki, S.; Ieki, M. J . Am. Chem. Soc. 1991, 113, 5063.
(380) Sakaki, S.; Ogawa, M.; Musahi, Y.; Arai, T. Inorg. Chem. 1994, 33, 1660.
(381) Sakaki, S.; Mizoe, N.; Sugimoto, M. Organometallics 1998, 17, 2510.
(382) Sakaki, S.; Ujino, Y.; Sugimoto, M. Bull. Chem. Soc. J pn. 1996, 69, 3047.
(383) Sakaki, S.; Kikuno, T. Inorg. Chem. 1997, 36, 226.
(384) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1997, 16, 1355.
(385) Cui, Q.; Musaev, D. G.; Morokuma, K. Organometallics 1998, 17, 742.
(386) Balasubramanian, K. J . Chem. Phys. 1991, 94, 1253.
(387) Poulain, E.; Bertin, V.; Castillo, S.; Cruz, A. J . Mol. Catal. A 1997, 116, 385.
(388) Mitchell, P. C. H.; Wol ohan, P.; Thompsett, D.; Cooper, S. J. J . Mol. Catal. A 1997, 119, 223.
(389) Castillo, S.; Cruz, A.; Bertin, V.; Poulain, E.; Arellano, J . S.; Del Angel, G. Int. J. Quantum Chem. 1997, 62, 29.
(390) Miller, W. H. J . Phys. Chem. 1983, 87, 3811.
(391) Mamaev, V. M.; Gloriozov, I. P.; Simonyan, V. V.; Zernova, E. V.; Prisyajnyuk, A. V.; Ustynyuk, Y. A. Mendeleev Commun. 1997, 246.
(392) Fayet, P.; K aldor, A.; Cox, D. M. J. Chem. Phys. 1990, 92, 254.
(393) Broclawik, E.; Yamauchi, R.; Endou, A.; Kubo, M.; Miyamoto, A. Int. J. Quantum Chem. 1997, 61, 673.
(394) Mamaev, V. M.; Gloriozov, I. P.; Simonyan, V. V.; Prisyajnyuk, A. V.; Ustynyuk, Y. A. Mendeleev Commun. 1996, 146.
(395) Dai, D.; Liao, D. W.; Balasubramanian, K. J . Chem. Phys. 1995, 102, 7530.
(396) J ohnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414.
(397) Killian, C. M.; Tempel, D. T.; J ohnson, L. K.; Brookhart, M. J . Am. Chem. Soc. 1996, 118, 11664.
(398) Drent, E.; Budzelaar, P. H. M. Chem. Rev. 1996, 96, 663.
(399) J ohnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267.
(400) Nozaki, K.; Sato, N.; Tonomura, Y.; Y asutomi, M.; Tayaka, H.; Hiyama, T.; Matsubara, T.; K oga, N. J. Am. Chem. Soc. 1997, 119, 12795.
(401) Siegbahn, P. E. M. Chem. Phys. Lett. 1993, 205, 290.
(402) Siegbahn, P. E. M. J. Am. Chem. Soc. 1993, 115, 5803.
(403) Siegbahn, P. E. M. J. Organomet. Chem. 1994, 478, 83.
(404) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137.
(405) Strömberg, S.; Zetterberg, K.; Siegbahn, P. E. M. J. Chem. Soc., Dalton Trans. 1997, 4147.
(406) Sakaki, S.; Ogawa, M.; Musashi, Y.; Arai, T. J . Am. Chem. Soc. 1994, 116, 7258.
(407) Rocha, W. R.; de Almeida, W. B. Organometallics 1998, 17, 1961.
(408) Coussens, B. B.; Buda, F.; Oevering, H.; Meier, R. J. Organometallics 1998, 17, 795.
(409) Creve, S.; Oevering, H.; Coussens, B. B. Organometallics 1999, $18,1967$.
(410) Green, M. L. H.; Sella, A.; Wong, L.-L. Organometallics 1992, 11, 2650.
(411) Bercaw, J. E.; Burger, B. J.; Green, M. L. H.; Santarsiero, B. D.; Sella, A.; Trimmer, M. S.; Wong, L.-L. J . Chem. Soc., Chem. Commun. 1989.
(412) Markies, B. A.; Wijkens, P.; Dedieu, A.; Boersma, J.; Spek, A. L.; van K oten, G. Organometallics 1995, 14, 5628.
(413) Frankcombe, K.; Cavell, K.; Knott, R.; Yates, B. J . Chem. Soc., Chem. Commun. 1996, 781.
(414) Frankcombe, K. E.; Cavell, K. J.; Yates, B. F.; Knott, R. B. Organometallics 1997, 16, 3199.
(415) Groen, J. H.; Zwart, A. d.; Vlaar, M. J. M.; Ernsting, J. M.; van Leeuwen, P. W. N. W.; Vrieze, K.; Kooijman, H.; Smeets, W. J. J.; Spek, A. L.; Budzelaar, P. H. M.; Xiang, Q.; Thummel, R. P. Eur. J. Inorg. Chem. 1998, 1129.
(416) Blomberg, M. R. A.; Karlsson, C. A. M.; Siegbahn, P. E. M. J . Phys. Chem. 1993, 97, 9341.
(417) K oga, N.; M orokuma, K. New J. Chem 1991, 15, 749.
(418) Svensson, M.; Matsubara, T.; Morokuma, K. Organometallics 1996, 15, 5568.
(419) Green, M. J.; Britovsek, G. J. P.; Cavell, K. L.; Gerhards, F.; Yates, B. F.; Frankcombe, K.; Skelton, B. W.; White, A. H. J . Chem. Soc., Dalton Trans. 1998, 1137.
(420) Rocha, W. R.; de Almeida, W. B. Int. J. Quantum Chem. 1997, 65, 643.
(421) Trost, B. M. Acc. Chem. Res. 1980, 13, 385.
(422) Tsuji, J. Tetrahedron 1986, 42, 4361.
(423) Consiglio, G.; Waymouth, R. W. Chem. Rev. 1989, 89, 257.
(424) Pfalz, A. Acc. Chem. Res. 1993, 26, 339.
(425) Trost, B. M. Acc. Chem. Res. 1996, 29, 355.
(426) Trost, B. M.; Vranken, D. L. Chem. Rev. 1996, 96, 395.
(427) Bäckvall, J.-E. Acc. Chem. Res. 1983, 16, 335.
(428) Bäckvall, J .-E. Pure Appl. Chem. 1992, 64, 229.
(429) Comprehensive Organometallic Chemistry; Pergamon Press: Oxford, 1982; Vol. 6.
(430) Norrby, P. O.; Åkermark, B.; Haeffner, F.; Hansson, S.; Blomberg, M. J. Am. Chem. Soc. 1993, 115, 4859.
(431) Sjögren, M.; Hansson, S.; Norrby, P.-O.; Åkermark, B.; Cucciolito, M. E.; Vitagliano, A. Organometallics 1992, 11, 3954.
(432) Peña-Cabrera, E.; Norrby, P.-O.; Sjögren, M.; Vitagliano, A.; Felice, V. D.; Oslob, J.; Ishii, S.; O'Neill, D.; Åkermark, B.; Helquist, P. J. Am. Chem. Soc. 1996, 118, 4299.
(433) Sakaki, S.; Nishikawa, M.; Ohyoshi, A. J. Am. Chem. Soc. 1980, 102, 4062.
(434) Curtis, M. D.; Eisenstein, O. Organometallics 1984, 3, 887.
(435) Nakatsuji, K.; Yamaguchi, M.; Murata, I.; Tatsumi, K.; Nakamura, A. Organometallics 1984, 3, 1257.
(436) Bigot, B.; Delbecq, F. New J. Chem. 1990, 14, 659.
(437) Szabó, K. J. Organometallics 1996, 15, 1128.
(438) Sakaki, S.; Satoh, H.; Shono, H.; Ujino, Y. Organometallics 1996, 15, 1713.
(439) Carfagna, C.; Galarini, R.; Linn, K.; Lopez, J. A.; Mealli, C.; Musco, A. Organometallics 1993, 12, 3019.
(440) Goddard, R.; Krüger, C.; Mark, F.; Stanfield, R.; Zhang, X. Organometallics 1985, 4, 285.
(441) Szabó, K. J. J. Am. Chem. Soc. 1996, 118, 7818.
(442) Szabó, K. J . Chem. Eur. J. 1997, 3, 592.
(443) Castagno, A. M.; Aranyos, A.; Szabó, K.J.; Bäckvall, J .-E. Angew. Chem., Int. Ed. Engl. 1995, 34, 2551.
(444) Aranyos, A.; Szabó, K. J.; Castano, A. M.; Bäckvall, J .-E. Organometallics 1997, 16, 1058.
(445) Ward, T. R. Organometallics 1996, 15, 2836.
(446) Szabó, K. J .; Hupe, E.; Larsson, A. L. E. Organometallics 1997, 16, 3779.
(447) Blöchl, P. E.; Togni, A. Organometallics 1996, 15, 4125.
(448) Margl, P.; Schwarz, K.; Blöchl, P. E. J. Chem. Phys. 1994, 100, 8194.
(449) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
(450) Togni, A.; Burckhardt, U.; Gramlich, V.; Pregosin, P. S.; Salzmann, R. J. Am. Chem. Soc. 1996, 118, 1031.
(451) Hagelin, H.; Åkermark, B.; Norrby, P.-O. Chem. Eur. J. 1999, 5, 902.
(452) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett. 1996, 255, 327.
(453) Cramer, C. J.; Truhlar, D. G. Science 1992, 256, 213.
(454) Szabó, K. J . Organometallics 1998, 17, 1677.
(455) Hegedus, L. S. Tetrahedron 1986, 40, 2415.
(456) Smidt, J .; Hafner, W.; J ira, R.; Sieber, R.; Rüttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176.
(457) Smidt, J .; Hafner, W.; J ira, R.; Sieber, R.; Sedlmeier, J .; Sable, A. Angew. Chem. 1962, 74, 93.
(458) Dedieu, A. In Theoretical Aspects of Homogeneous Catalysis, Applications of Ab Initio M olecular Orbital Theory; van Leeuwen, P. W. N. M., M orokuma, K., van Lenthe, J. H., Eds.; Kluwer Academic Publishers: Dordrecht, 1995; p 167.
(459) Siegbahn, P. E. M. J. Am. Chem. Soc. 1995, 117, 5409.
(460) Siegbahn, P. E. M. J. Phys. Chem. 1996, 100, 14672.
(461) Oishi, Y.; Sakamoto, E.; Fujimoto, H. Inorg. Chem. 1996, 35, 231.
(462) Cross, R. J. Adv. Inorg. Chem. 1989, 34, 219.
(463) Dedieu, A. In Topics in Physical Organometallic Chemistry; Freund Publishing House: London, 1985; Vol. 1, p 1.
(464) Lin, Z.; Hall, M. B. Inorg. Chem. 1991, 30, 646.
(465) Deeth, R. J.; Elding, L. I. Inorg. Chem. 1996, 35, 5019.
(466) Muguruma, C.; K oga, N.; Kitaura, K.; Morokuma, K. Chem. Phys. Lett. 1994, 224, 139.
(467) Muguruma, C.; K oga, N.; Kitaura, K.; Morokuma, K. J . Chem. Phys. 1995, 103, 9274.
(468) Frankcombe, K. E.; Cavell, K. J.; Yates, B. F. J. Phys. Chem. 1996, 100, 18363.
(469) Romeo, R.; Grassi, A.; Scolaro, L. M. I norg. Chem. 1992, 31, 4383.
(470) Broclawik, E.; Haber, J .; Endou, A.; Stirling, A.; Yamauchi, R.; Kubo, M.; Miyamoto, A. J . Mol. Catal. A 1997, 119, 35.
(471) Fantucci, P.; Lolli, S.; Pizzotti, M.; Ugo, R. Inorg. Chem. Acta 1998, 270, 479.
(472) Zanardo, A.; Pinna, F.; Michelin, R. A.; Strukul, G. Inorg. Chem. 1988, 27, 1966.
(473) Sakaki, S.; Ogawa, M.; Musahi, Y. J . Organomet. Chem. 1997, 535, 25.
(474) Kragten, D. D.; van Santen, R. A.; Lerou, J. J. J. Phys. Chem. A 1999, 103, 80.
(475) Mylvaganam, K.; Backsay, G. B.; Hush, N. S. J . Am. Chem. Soc. 1999, 121, 4633.
(476) Periana, R. A.; Taube, D. J .; Gamble, S.; Taube, H.; Satoh, T.; Fuji, H. Science 1998, 280, 560.
(477) Albert, K.; Gisdakis, P.; Rösch, N. Organometallics 1998, 17, 1608-1616.
(478) Musaev, D. G.; Froese, R. D. J.; Morokuma, K. New J. Chem. 1997, 21, 1269.
(479) Froese, R. D. J.; Musaev, D. G.; Morokuma, K. J. Am. Chem. Soc. 1998, 120, 1581.
(480) Musaev, D. G.; Froese, R. D. J .; Morokuma, K. Organometallics 1998, 17, 1850.
(481) Margl, P.; Ziegler, T. J . Am. Chem. Soc. 1996, 118, 7337.
(482) Margl, P.; Ziegler, T. Organometallics 1996, 15, 5519.

CR980407A

